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Abstract— Robot manipulator designs are increasingly fo-
cused on low cost approaches, especially those envisioned for use
in unstructured environments such as households, office spaces
and hazardous environments. The cost of angular sensors varies
based on the precision offered. For tasks in these environments,
millimeter order manipulation errors are unlikely to cause
drastic reduction in performance. In this paper, estimates the
joint angles of a manipulator using low cost triaxial accelerom-
eters by taking the difference between consecutive acceleration
vectors. The accelerometer-based angle is compensated with a
uniaxial gyroscope using a complementary filter to give robust
measurements. Three compensation strategies are compared:
complementary filter, time varying complementary filter, and
extended Kalman filter. This sensor setup can also accurately
track the joint angle even when the joint axis is parallel to
gravity and the accelerometer data does not provide useful
information. In order to analyze this strategy, accelerometers
and gyroscopes were mounted on one arm of a PR2 robot.
The arm was manually moved smoothly through different
trajectories in its workspace while the joint angle readings
from the on-board optical encoders were compared against the
joint angle estimates from the accelerometers and gyroscopes.
The low cost angle estimation strategy has a mean error
1.3◦ over the three joints estimated, resulting in mean end
effector position errors of 6.1 mm or less. This system provides
an effective angular measurement as an alternative to high
precision encoders in low cost manipulators and as redundant
measurements for safety in other manipulators.

Index Terms— MEMS, accelerometers, gyroscopes, manipu-
lator state estimation, extended Kalman filter, complementary
filter

I. INTRODUCTION

Reducing overall cost is critical to the commercialization
of robotic manipulator technologies [1], [2], especially those
envisioned for use in unstructured environments such as
households, office spaces and hazardous environments [3],
[4]. In order for humanoid robots such as the PR2 [2],
NAO [5], and others to reach their target market in house-
holds and workplaces, the cost of the robot must decrease.

Angular sensors form a critical component of the overall
cost of manipulator arm joints [6], which in turn are a signifi-
cant part of the overall cost of a robot [2]. The cost of angular
sensors varies based on the precision offered. Table I shows
a cost comparison for the PR2 manipulator arm between
traditional optical encoders and MEMS accelerometers and
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Fig. 1. (a) Photograph of the manipulator arm equipped with accelerom-
eters and gyroscopes. (b) Close-up showing the accelerometer (top) and
gyroscope (bottom) for measuring wrist roll.

TABLE I
SENSOR COST COMPARISON

Device Cost Total for PR2 Arm

Optical Encoder (1,024 pulse/rev) $40 $280

Optical Encoder (10,000 pulse/rev) $110 $770

MEMS Accelerometer $3.11 $22

MEMS Gyroscope $4.77 $33

gyroscopes [7], [8], [9]. The PR2 arm has 7 degrees of
freedom, and one optical encoder can be replaced by one
MEMS accelerometer and gyroscope pair.

The use of precision MEMS devices has the potential to
offer cost reductions over 5 times over traditional sensors. Al-
though using MEMS accelerometers and gyroscopes may re-
sult in lower precision measurements, for tasks in households
and workplaces though, millimeter order manipulation errors
are unlikely to cause drastic reduction in performance [10].

The cost of accelerometers and gyroscopes has dropped
to a point where they have become ubiquitous sensors, as
seen by their presence in mobile phones and video game
controllers. It is possible to use these sensors to estimate the
joint positions of a robotic manipulator [6], [10]. This allows
the joint angle sensor to be decoupled from the physical joint
axis or actuator axis. In turn, this allows for a truly redundant
measurement mechanism for safety as well as for new, lower-
cost manipulator designs.

Replacing precision optical encoders with accelerometers
and gyroscopes may reduce accuracy and repeatability. Gy-
roscopes are subject to drift as a result of integration of the
readings and temperature effects. Accelerometers are unable
to capture rotations about an axis parallel to the gravity



vector. If the manipulator is able to move in this manner,
then gyroscopes are required for measuring over the full
workspace [10].

This paper presents a strategy to estimate joint angular
positions of revolute joints in rigid bodies using low-cost
MEMS accelerometers and gyroscopes. Joint angles are
estimated using one triaxial accelerometer on each link
of a PR2 robot, which is compensated with a uniaxial
gyroscope to give robust measurements. The paper includes
a comparison of common filtering techniques for combining
measurements, such a simple complementary filter [11], [12],
[13]; a time varying complementary filter (TVCF) [14]; and
an Extended Kalman Filter (EKF) [15]. Two photographs of
the manipulator arm equipped with sensors for testing this
strategy are shown in Figure 1.

Section II discusses previous work in this field. Section III
discusses the theoretical setup, assumptions, and the system
model for the proposed strategy. Section IV discusses the
tested filtering techniques. Section V provides a physical
implementation of the strategy with experimental results.

II. RELATED WORK

Early work in utilizing inertial sensors is mostly focused
on human motion capture and inertial navigation systems.
The low-cost advantages of inertial sensors lend to them
being used in human gait and biomechanical analysis. Sev-
eral such units are utilized in the video-game controller
industry [16] as well as in virtual reality and gesture recog-
nition, where the units can be worn by humans on hands and
legs [17]. Fong and Chan [18] provide a comprehensive re-
view of the sensing methods and analysis adopted by several
researchers in this field. The combination of accelerometers
and gyroscopes as inertial measurement units (IMUs) is
prevalent in most attitude and orientation tracking systems,
for example [19]. Quaternion-based approaches are popular
in orientation estimation for applications like aerial vehicles.
Here, the device can easily pass through the “gimbal lock”
singularity of an Euler Angle solution approach. [20], [21],
[22] describe various methods, including integrating the
angular rate from the gyroscopes to estimate the headings and
using the accelerometer values to stabilize and compensate
the gyroscope drift.

In robotic manipulator state estimation, Quigley et al. [10]
present an EKF-based method which utilizes the acceleration
vector to estimate the joint angle using one accelerometer
for each pair of manipulator joints. The kinematics of the
manipulator arm are used in the state estimation, and the
joint angles are accurately estimated within approximately
1◦ of the shaft encoder readings. The authors specifically
mention avoiding the singularity condition, when a joint axis
is near parallel to the gravity vector, in their experiments.
Cheng and Oelmann provide a review and analysis of the
various accelerometer-based, gyroscope-compensated rigid-
body joint angle estimation techniques [6], [23]. The authors
classify the methods into four categories: Common Mode
Rejection (CMR), CMR with gyroscope integration, CMR
with gyroscope differentiation, and distributed CMR. In the
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Fig. 2. The proposed method for computing the next joint angle estimate
from accelerometer and gyroscope readings at sample n. The calculation
procedure depends on whether or not the axis of rotation, ~K, is parallel
within some ε to the gravity vector, ~g, or not. The arctangent is used to
estimate the joint angle, θa, from the accelerometer measurements. A filter
combines this estimate with the gyroscope measurement, Ωn, to produce a
final joint angle estimate for the next time step: θn.

CMR method, joint angle are calculated from acceleration
vectors of two consecutive accelerometers. However, the
authors only consider planar manipulator rotations and do
not consider non-planar joint rotations such as those likely
performed by a manipulator in an unstructured environment.

The above research demonstrates the significant utility of
inertial sensors in robotic manipulator joint angle estimation.
The combination of accelerometer and gyroscope for 3-
dimensional motion estimation is an attractive option for
reduced cost mechanisms. This paper implements the CMR
method in the general non-planar case, and it compares
methods of combining accelerometer and gyroscope mea-
surements for joint angle estimates.

III. ACCELEROMETER BASED ESTIMATION

The state of a three-dimensional robotic manipulator con-
sidered here is the joint angles and velocities. By incorpo-
rating a gyroscope on each link, the joint velocities can be
directly and accurately measured. Joint acceleration is not
considered. Using a priori knowledge of the manipulator
kinematics and the corresponding accelerometer mounting,
a unified state estimate for the joint angles can be obtained.
A critical requirement for the proposed approach is the
accelerometer must be able to sense the acceleration due to
gravity at all times. Currently, the proposed approach utilizes
the gravity component of the acceleration while ignoring
the centripetal and centrifugal components. The robot moves
slowly to be safe around humans, and the movements are
slow enough to justify this assumption. However, any high
frequency motions of the manipulator arm may result in un-
stable readings from the accelerometers, thereby introducing
offsets which cannot be compensated.



Figure 2 provides an overview of how the proposed
strategy computes the (n + 1)th estimate of a joint angle,
θn+1, from the accelerometer and gyroscope readings. First,
the calculation procedure depends on whether or not the
axis of rotation, ~K, is parallel within some ε to the gravity
vector, ~g, or not. If ~K ∦ε ~g, then the accelerometer input
is useful. In this case, an estimate of the joint angle of a
given link is fused with gyroscope measurements using one
of three filters. [12], [24] present a cogent comparison of
the performance of complementary and Kalman filters for
orientation estimation problems. The estimated joint angle
is used to calculate the gyroscope drift. When ~K ‖ε ~g, θn
is estimated from the the gyroscope measurements and the
previously computed gyroscope drift.

A. Rotation Axis not Parallel to Gravity Vector

When the joint axis is not parallel to the gravity vector, the
joint angle is estimated using accelerometer measurements
and can be compensated using gyroscope measurements.
Each accelerometer measures the gravity vector, and these
vectors are the used in sequential pairs as an adaptation of
the CMR method in [6] for 3-dimensional angle estimation.

Mounting one accelerometer on every link reduces the
calculation of the joint angle between the link pairs to the dif-
ference between the gravity vectors measured by consecutive
accelerometers. The gravity vector provides an orientation
for each accelerometer. X-Y-Z Euler angles are used to relate
the accelerometer orientations between consecutive links. A
quaternion based solution is not necessary because the joints
connecting the manipulator links have only one degree of
freedom. The X-Y-Z Euler angle rotation matrix is given in
[25], and for the ith link is given by a rotation Ri. Thus the
measurements of the gravity vector in consecutive frames are
related by

~gi = Ri · ~gi−1. (1)

The angle of joint i along with any fixed rotational offsets
are present in Ri. Given ~gi−1 and ~gi from accelerometer
measurements, it is possible to solve for Ri and θi.

The fixed rotational offsets in Ri come from the manipu-
lator geometry and the physical placement of the accelerom-
eters on the links. Since they are fixed, The rotation matrix
can be written as a product of three rotations:

Ri = Ri+ ·Ri,θ ·Ri− , (2)

where Ri+ and Ri− are fixed rotation matrices determined
by the mounting of the accelerometers to the manipulator.
Intelligent placement of the accelerometers can simplify the
fixed rotations, and a calibration routine can be run to find
the remaining values. The variable rotation can be written in
any valid form of rotation matrix, but for simplicity let

Ri,θ =

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 . (3)

Figure 3 shows a generic joint and two links with accelerom-
eters mounted to the links. Note that the accelerometer axes
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Fig. 3. A generic joint between two links showing how accelerometers
and gyroscopes are mounted. The gyroscope axis must be parallel to the
axis of joint rotation. The accelerometer axes do not need to be parallel to
the axis of rotation, but solving for the angle is simplified if they are.

do not need to be orthogonal to each other or to the joint axis,
but the fixed rotation matrix is simplified if they are. This
allows the freedom to mount the accelerometer on the link
away from the joint itself, as well as in different orientations
depending on the mounting considerations.

Equation 3 can be solved using the arctangent. As an
example, if Ri+ and Ri− are identity matrices , thenxiyi

zi

 =

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

xi−1

yi−1

zi−1

 , (4)

Equation 4 provides two transcendental equations in θi that
can be solved for the joint angle:

θi = atan2

(
yixi−1 − xiyi−1

xixi−1 + yiyi−1

)
. (5)

Similar equations can be solved for each joint.

B. Rotation Axis Parallel to Gravity Vector (Singularity
Condition)

When a joint axis is parallel to the gravity vector, the
accelerometer measurements provide no useful information
for determining the joint angle. In this singularity condition,
a gyroscope is necessary to estimate the joint angle.

The gyroscope measurements are integrated at each time
step to provide the joint angle estimate. There is the potential
for large errors to accumulate due to gyroscope drift. Gy-
roscope drift can be easily calculated when the joint axis is
not parallel to the gravity vector by integrating the gyroscope
readings and comparing against the joint angle. This is shown
in the right half of Figure 2, where the joint angle is most
accurately estimated by the output of the filter.

In addition to drift correction, it is expected that a three-
dimensional manipulator will not spend long periods of time
in this singular configuration.



IV. ACCELEROMETER AND GYROSCOPE COMPENSATION

The accelerometer solution presented above is limited to
regions of the manipulator workspace where ~Ki ∦ε ~g for
each joint axis. An angular rate gyroscope mounted such
that measurement axis is parallel to the axis of rotation of
the joint can easily eliminate this restriction.

A. Complementary Filter

The complementary filter chosen is very simple and ef-
ficient to implement. The accelerometer measurements tend
to have significant high frequency noise, and the drift in
the gyroscope measurements is primarily low frequency. The
complementary filter is formed by passing the accelerometer
measurements through a low pass filter and the gyroscope
measurements through a high pass filter. Using first order
IIR filters with the same cutoff frequency yields a comple-
mentary filter of the form:

θi,n = c (θi,n−1 + Ωi,nT ) + (1− c) θi,a., (6)

where θi,n is the nth estimate of angle θi, Ωi,n is the nth

measurement from the gyroscope, T is the sampling period,
θi,a is the estimate of θi based on acceleration measurements
alone, and c is a smoothing constant which determines the
cutoff frequency. The time constant for the complementary
filter is approximated by

τ ≈ T c

1− c
. (7)

B. Time Varying Complementary Filter

Similar to the complementary filter, the TVCF adjusts the
cutoff frequency based on the magnitude of the accelera-
tion vector. The measurement of the gravity vector using
accelerometer-based estimation is predominately corrupted
by motion accelerations. A time-varying cut-off frequency
scheduling can be used to discern the stationary and the
moving states, which is proposed by E. Chang-Siu [14]. This
is realized by comparing the magnitude of the accelerometer
measurement with gravity, or determining the centripetal
acceleration based on the gyroscope measurement. Fuzzy
logic rules effectively shift the trustworthiness between the
gyroscope and the accelerometer. Having a high cutoff
frequency indicates that the accelerometer is trusted more,
causing the estimate to be more sensitive to accelerometer
noises and motion accelerations but attenuate the gyroscope
drift, while a low cutoff frequency indicates the gyroscope
is the trusted sensor.

C. Extended Kalman Filter

Since the relationship between the joint angle and the
measured acceleration vectors is non-linear, the EKF is
needed over the linear Kalman Filter. In this implementation,
a three state EKF is used sequentially; when the EKF for
joint i is computed, the a posteriori estimates of the previous
i − 1 joint angles are available. This causes a small loss
of accuracy over a monolithic EKF, but it comes with a
significant boost in computation speed, as n 3× 3 matrices
are easier to invert than one 3n× 3n matrix.

The states are δθiβi
θ̈i

 , (8)

where δθi is the error in the joint angle estimate from the
gyroscope integration, βi is the bias in the gyroscope drift,
and θ̈i is the joint angular acceleration.

The angular rate from the gyroscope is integrated and
corrected by δθi. The correction factor is calculated from the
measured accelerations and the estimated gyroscope drift to
give the final joint angle estimate.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The strategy just presented was implemented and tested on
a seven degree-of-freedom robot manipulator (PR2, Willow
Garage). Five triaxial accelerometers (BMA180, Bosch [7])
and three uniaxial gyroscopes (SMI540, Bosch [26])
mounted on one arm of the robot. Five gyroscopes were
not used due to mounting constraints. Linux-based software
was written using the open-source Robot Operating System
(ROS) platform [27]. The ROS framework provides logging,
playback, and visualization tools.

The BMA180 accelerometers provide 14-bit accuracy,
adjustable measurement ranges, an SPI interface, and pro-
grammable digital filters. The SMI540 gyroscopes provide
16-bit accuracy, low noise, an SPI interface, and a pro-
grammable digital filter. Drivers for both sensors are freely
available in ROS.

Figure 1 shows two photographs of the sensors mounted
on the robot arm. The sensors are mounted such that three
angles could be estimated: Elbow Flex, Wrist Flex, and Wrist
Roll. Neither sensor type needs to be mounted coincident
with the joint axis, but the gyroscope axis is mounted parallel
to the joint axis.

B. Numerical Results

Before the joint angles can be estimated, a calibration
step is warranted owing to the misalignments internal to
the sensors as well as their mounting on the manipulator
arm and the manufacturing tolerances in the manipulator
structure. Since the PR2 arm is equipped with high-precision
optical encoders in each joint, a simple calibration step is
run to estimate the initial offsets and fixed rotations. The
PR2 arm is held stationary with the sensors mounted. The
angle estimation algorithm is run for 10 seconds at 100 Hz,
allowing for the generation of a mean offset for each of
the joint angles by comparing the estimated angles with
the actual angles from the encoders. This accounts for the
misalignments of the kinematic frames of the joints with
respect to that of the accelerometers and gyroscopes.

During experimentation, parameters were empirically ad-
justed to provide the best results including the threshold for
when the joint axis is parallel to the gravity vector, the
time constant for the complementary filters, and the noise
covariances for the EKF. The transition threshold for the ith
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Fig. 4. Angle of the Elbow Flex joint with estimated angles.
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Fig. 5. Angle of the Wrist Flex joint with estimated angles.

joint axis to be vertical, depends on the absolute value of az
in ~ai because the accelerometer is mounted so this axis is
parallel to the joint axis. Based on 30 different trials for the
angle estimation transition, the threshold is set as 0.85 g. The
time constant for the complementary filter is set to 2 seconds.

The arm was manually moved smoothly through different
trajectories in its workspace and the four joint angles were
recorded over 120 seconds at a rate of 100 Hz. The joint
angle readings from the on-board optical encoders were
compared against the joint angle estimates from the filters
using the accelerometers and gyroscopes. Figures 4, 5, and 6
and show the favorable tracking performance. Table II shows
the mean error and standard deviation in the estimated angles
for all three joints. The deviations increase for links further
from the base, and is likely caused by larger magnitude
vibrations of the manipulator at those links.

The Wrist Roll joint shows a larger error in estimation than
the Elbow Flex and Wrist Roll joints. This appears to be due
to the steps in the encoder signal. Since the joints are moved
manually and smoothly, it seems likely that the encoder
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Fig. 6. Angle of the Wrist Roll joint with estimated angles. The steps in
the encoder signal give rise to the large errors for this joint. In this case the
encoder may be malfunctioning.

is malfunctioning. The Elbow Flex exhibits the smallest
standard deviation for all filters. This is expected as there
is the the distal sensors experience larger accelerations when
the arm is moved. The current filtering strategy assumes that
the arm motion is quasistatic where the only accelerations
felt by the sensors is from gravity.

VI. DISCUSSION AND CONCLUSIONS

The main advantages in utilizing MEMS accelerometers
and gyroscopes for manipulator state estimation are a re-
duction in costs, a reduction in sensor size, and decou-
pling angle estimation from the physical joint-actuator axes.
The reduction in size is clear from form-factor compar-
isons of MEMS devices with other regular-sized mechanical
components, especially the high-precision encoders used in
robot manipulator arms. The reduced size, along with the
decoupling from the joint axis, affords more flexibility in
sensor placement along the manipulator link. This placement
flexibility plays an important role in the development of

TABLE II
JOINT ANGLE ESTIMATION ERROR (DEGREES)

Joint Name Filter Avg. Error [◦] Std. Dev.

Elbow Flex CF 0.18 1.24

Elbow Flex TVCF 0.12 1.64

Elbow Flex EKF 0.54 1.18

Wrist Flex CF 0.99 2.97

Wrist Flex TVCF 0.49 3.36

Wrist Flex EKF 0.82 4.76

Wrist Roll CF 6.07 7.90

Wrist Roll TVCF 3.73 7.43

Wrist Roll EKF 2.46 9.59



new, smaller foot-print manipulators that may have space
restrictions preventing the use of regular-sized encoders [5].

The main disadvantages of MEMS sensors are a reduction
in accuracy and increased measurement noise. The accuracy
measured in these experiments is enough to enable a visual
feedback loop to make additional corrections. Since most
mobile manipulators like the PR2 also include cameras, the
ability to use a visual feedback loop is a valid assumption.
The visual feedback loop can also compensate for any
thermal drift in the MEMS sensors. Additionally, in many
tasks millimeter level accuracy is not needed.

By comparing between two sequential links, joint angle
errors do not compound. The mean errors in the Elbow Flex
produce end effector position errors of 4.5 mm, 6.1 mm,
and 3.2 mm for the CF, TVCF, and EKF, respectively. The
sensors are small and require a single data bus, reducing
the wiring along the arm. The accuracy with which they
can track the manipulator state allows them to provide an
effective redundant measurement for safety or replace the
current measurement system in a low-cost manipulator.

The accelerometer and gyroscope based estimation tracks
the manipulator motion quite well. As noted earlier, the
accelerometer measurements are noisy, especially for the
distal joints of the arm, even with a low sensor sampling rate
of 100 Hz. The sampling rate would have to be much higher,
close to 1000 Hz, for active feedback-controlled motions
of the arm. The sensors are capable of measuring at this
frequency, however 100 Hz was chosen for proof-of-concept
purposes, considering that only passive movements of the
manipulator were being analyzed.

With the setup described here, only passive movements of
the manipulator are analyzed. In the future, experiments will
be conducted where the manipulator motion is actively con-
trolled using the estimated joint angles in place of the optical
encoders. Improved filtering and noise canceling strategies to
produce smooth arm motion without pronounced vibrations.
In addition, the existing algorithms assume slow motions,
or turn down the trustworthiness of the accelerometer when
detecting large motions. Because of the coupled kinematic
relations, motion accelerations can actually be utilized in
order to obtain a better joint angle estimate by using an
extended Kalman filter where the exact kinematics are mod-
eled. These experiments will provide additional information
on the reliability and robustness of this type of manipulator
state estimation.
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