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Abstract— This paper describes a system for automatic
mapping and generation of textured 3D models of indoor
environments without user interaction.

Our data acquisition system is based on a Segway RMP plat-
form which allows us to automatically acquire large amounts
of textured 3D scans in a short amount of time. The first data
processing step is registration and mapping. We propose a
probabilistic, non-rigid registration method that incorporates
statistical sensor models and surface prior distributions to
optimize alignment and the reconstructed surface at the same
time. Second, in order to fuse multiple scans and to recon-
struct a consistent 3D surface representation, we incorporate
volumetric surface reconstruction method based on a oriented
point. For the final step of texture reconstruction, we presenta
novel method to automatically generate blended textures from
multiple images and multiple scans which are mapped onto
the 3D model for photo-realistic visualization. We conclude our
report with results from a large-scale, real-world experiment.

The most significant contribution of this research is a
functional system that covers all steps required to automatically
reconstruct textured 3D models of large indoor environments.

Lidar for SLR Camera
3D scanning

3D representations of environments are important for a
wide variety of current and future applications: autonomou
navigation of robots, architecture, cultural heritagegstr
and crime site reconstruction, and many more. Emergen

I. INTRODUCTION

The scanning platform is based on a Segway RMP, eqdipjith

planning, facility management, surveillance and realtestagyo laser range finders for navigation and 3D scanning reispég a digital
applications significantly benefit from 3D maps of buildingSLR camera for texture acquisition, and two on-board compuiter data
interiors. Creating such models from blueprints is a tesliolP"0€sS!n9-

task and hard to automate since many buildings do not com-

ply with the blueprints created by their architects. Andreve

of textured 3D models.

accurate blueprints do not contain furniture or appliances
added after the building construction. A. State of the Art and Related Work

Today, the digital modeling process of such sites is still 5 1econstruction of 3D models for robot navigation
primarily done manually. Because working time is expensiveyineq significant interest in robotics research over thg pa

these models typically lack details that might be vital fo
applications such as autonomous robot navigation.
In contrast, a fully automated 3D data acquisition ang,

E/ears. The progress in this field is mainly based on recent
innovations on statistical techniques for robotic mapgngd
calization. Several successful algorithms emerged,ngmo

model generation involves the following complex compos,.m cekE [1], SEIF [2], FastSLAM [3], MLR [4], TITF

nents: [5], and Stochastic Gradient Descent [6], which are all eapa
« automated acquisition of range and image data ble of generating maps of large scale environments. Nearly
» fusion of data from different viewpoints all state of the art methods assume robot operation in a two-
« integration of range and image data into a a singlgimensional environment and therefore three parametérs (2
consistent model position and heading) are sufficient to describe the robot's
« simplification and smoothing of the model for visual-state. Just recently researchers are extending soluticind t
ization and storage 6 DoF poses [7] and mapping of 3D environments [8].

In this paper, we address the first three components andMany research groups use 2D laser range finders to build
present a working system for the automatic reconstructicd8BD map representations. Often, a combination of horizfntal



and vertically mounted scanners are used and localizafion Exploration
the robot and registration of the data is performed in 2D [9

Viewpoint Planning

[10]. The mobile robot Kurt3D [11] is among the first robots osomery ! zsan |
capable of building 3D maps by registering the data in 3D : } -
While in the robotics community laser range finders ar: Fapeetioine=t|

predominant for accurate mapping tasks, in the compute !

vision domain, researchers have developed powerful alg R—— —
rithms to reconstruct 3D models from photographs. Multi | o
view stereo (MVS) [12] is one of the most successfu |:
approaches which produces dense models. Another nota
example is Furukawa et. al [13], who presented a full
automated 3D reconstruction and visualization system ft
architectural scenes based on camera images. Although <
nificant progress to improve the robustness of compute
vision reconstruction approaches was made in the past,yee Giobal Registration Texture Reconstruction
the approaches yet cannot compete with the accuracy of la: 444 Segmertaten_ |
range finders. Specifically, textureless scenes which &e@ of 0 regiraion_| i
found in indoor environments remain very challenging. , —1—|
Our reconstruction approach is simillar to exis_ting AP | Surface Reconstruction Roparametorizaion
proaches [14], [15]. The RESOLV project [14] aimed ai o
modeling interiors for virtual reality and tele-presenceda s St R—“j“—l

used a RIEGL laser and the well known ICP algorithm [16 | | ¥ Blnting
for scan matching. However, their approach was designed ‘
reconstruct small (single-room sized) environments; afper

ing on the scale of a full office floor poses a major challenge Textured 3L Model
The AVENUE project [15] targeted the automation of the
urban environment modelling process and used a CYRAX
laser scanner and a feature-based scan matching approach
for registration of the 3D scans.
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Fig. 2. Overview of the reconstruction and modelling process

over a range of 15km. For the purpose of high-quality mea-
B. Overview surements, we equipped the RMP with an additional castor-
h\gheel and disabled the dynamic stabilization. To colletada
nd perform online mapping and exploration, two on-board
ac Mini computers (2.0GHz Core 2 Duo processor, 1GB

M) are mounted under the base plate. The computers use
e open-source Robot Operating System (ROS) [17] which
provides a structured communications layer above the host
perating system (linux in our case).

In the following, we present a system that enables t
automatic creation of 3D models of large environments i
a short amount of time. Fig. 2 shows the complete recon-
struction process. The process is divided into the five ste
exploration data acquisition global registration surface
reconstructionand texture reconstructian

The exploration contains functions that enable the robot®
to autonomously navigate and explore the environment. This Il. EXPLORATION
includes online 2D mapping for localization and collision i L
avoidance, planning of view points for data acquisitiord an” 2D Mapping and Localization
navigating in between 3D scarBata acquisitioncomprises For navigation, exploration, and localization purposes th
the acquisition of the laser scans from a panning lidar senseobot builds and maintains a 2D map of its environment.
which are then merged into 3D scans. The digital still camerBhe main sensor for this system is a horizontally mounted
simultaneously acquires images, which are undistortetgusi SICK LMS200 laser range finder (cf. Fig. 1). The laser
an offline camera calibration and subsequently merged intor@adings and wheel odometry are sent to a SLAM module
circular panorama. Thglobal registrationstep aligns the 3D based on GMapping [18] which constructs a consistent high
points from the individual scans into a consistent map usingsolution 2D grid-based map of the environment suitable
a joint registration and reconstruction algorithm. A urqu for path planning.
surface represented by a triangulated mesh is then gederate . )
using volumetricsurface reconstructiarFinally, textures are - View Point Planning
generated from still images and blended over the mesh in theFrontier based exploration [19] is used to provide active

texture reconstructiorstep. exploration of the robot’s environment. An additional 2D
) ) grid map is maintained to record which parts of the envi-
C. The Experimental Scanning Robot ronment have been observed. Boundaries between observed

For our experiments we use a Segway RMP robot and unobserved regions (frontiers) are used as goal paints f
shown in Fig. 1. The RMP can carry loads up to 50 kghe robot's navigation system. Upon arriving at a goal point



the robot will perform a full 3D scan of its environment
and update its exploration map. New boundaries and go
points will then be calculated. This process repeats uwtil n
reachable frontiers remain.

I11. DATA ACQUISITION
A. Sensors

The range measurement component of this scanning sy
tem consists of a SICK LMS200 laser range finder whic
is mounted on a pan-rotation unit such that the plane of t
laser's sweep is aligned with the vertical axis. The LMS
unit provides accurate measurements up to a range of
meters over 180 degrees and with 1/2-degree resoluti
Panning the laser 360 degrees about the vertical axis yie
a sphe.ncal _range image a; shown in Fig. 3. The pannl_ . 3. Panoramic range image (top) and texture image (bottoth) /2
speed is adjusted to also yield a 1/2-degree scan resaluti@dgree resolution. Invalid cells are marked red.

A digital still image camera equipped with a fish-eye
lens is mounted on the same rotation unit opposite of the
laser. This setup allows the system to capture high-résalut a precise, externally referenced position estimate, we hav
pictures of the scene while panning. Because of the camer&s address the problem of simultaneous localization and
wide field-of-view it only needs to take six pictures to covemapping (SLAM).
the scanned space. We use a novel probabilistic technique for solving the

o offline SLAM problem by jointly solving the data registration
B. System Calibration problem and the faithful reconstruction of the underlying

In order to fuse data from different scan positions andeometry. The key insight of this approach is to incorposate
texturize the point data obtained from the laser range findejeneric surface prior which guides the optimization toward
the camera’s intrinsic and extrinsic parameters as well asaps that closely resemble the real environment. A more
the laser range finder's pose have to be determined. Thetailed description of this approach for the 3-DoF case can
intrinsic camera parameters were estimated using the mhethige found in [21].
described in [20] assuming a pin-hole camera model with The goal of SLAM is to simultaneously estimate both the
three radial and two tangential distortion parameters. Thebot's pose and a map of its environment. In probabilistic
camera pose relative to the lidar is determined from correésLAM this is often expressed in a Bayesian filtering formu-
spondences of 3D points from the laser range finder witlation [22]. Thrun et al. have shown [23] that a closed form
image pixels from the camera. The correspondences are ggpression of a posterior over the robot’s pose and the map
lected manually from several camera views and a panoramian be obtained by recursively applying the Bayes rule and
range image. The extrinsic parameters are calculated fromsubsequent induction:
the point correspondences by minimizing the reprojection

error [20]. P (X1, mlury, z1:) = €y
C. Point Cloud Generation np (x0)p (m) [T |p (xefxe—1,w) [ [ (2F %, m)
A three-dimensional point cloud is generated by panning t k

the laser and associating each vertical scan line with its p&lere we adapted the common notation where at a tithe
angle. Since the raw scan data is not sampled equidistantlg|lowing quantities are definec; is a vector describing the
it is resampled into an equidistant spherical grid. Eact gri3D position and attitude of the robat,; denotes a control
cell contains the distance measurement which is closeleto tvector that was applied at time- 1, z¥ corresponds to the
center of the cell. Measurements inside a cell are not avert” observation, andn represents the map as a vector of
aged since this would cause artifacts at depth disconitesuit featurem = {m,}.
Some cells in the depth grid may not contain any valid depth In Eq. (1), p (x¢|x:—1,u;) is known as themotion model
measurements if an object is out of range or if the laser beawhich describes state transitions of the robot's pose in
hits an absorbant surface and never returns. Those cells éggms of a probability distribution. The state transiticare
marked invalid in subsequent processing steps. assumed to be a Markov process and independent of both
the observations and the map. The terfxf|x;, m) on the
other hand denotes ambservation modelvhich models a
Multiple 3D scans are necessary to digitize large embservationzF from a known pose and a known map as a
vironments without occlusions. To create a correct androbability distribution. Both models have been well sadi
consistent model, the scans have to be merged into of@ a variety of robots and sensors. We use a probabilistic
common coordinate system. Since the robot does not hametion model where the robot is assumed to perform a series

IV. GLOBAL REGISTRATION



of a rotation, a translation, and a second rotation [24] &ith
extension to the 6-DoF state space. Observations are ntbdele
as a range measurement along a beam, which originates at
the local coordinate system of the sensor [24].
The two prior termsp (x0) andp (m) characterize priors
about the first robot pose and about the map respectively. y

Usually p (x¢) is used to anchor the initial pose to a fixed
location. The map priop (m) is typically assumed to be
unknown and subsumed into the normalizef25]. In our
formulation, we want to explicitly use the map prior to
achieve a better estimate of the robot’s pose and the map.

A. Map Prior

The probability distributiorp (m) in Eq. (1) represents a
prior distribution of all measured scenes. An exact proba-
bilistic model of this distribution is infeasible and prdiha
not even well defined. Hence we focus on partial models,
which represent properties of the surface structure. We use .
a so calledmanifold prior. This prior is based on the idea
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Fig. 4. Themanifold prior uses a fixed neighborhood. of a point ICP alignment Our non-rigid alignment

to create a tangent plane defined by a peintand the normak;. The

distribution is then modelled as a Gaussian over the prajedigtance to

the tangent plane. Fig. 5. The top figure shows a manually created floorplan anttafectory
taken by our scanning robot. The middle figure presents the @btqhoud

: : : ) registered with our registration algorithm. The enlargethidl®f a hallway
that observations belong to continuous surfaces in thet H)bodemonstrates that using our probabilistic non-rigid mettesdiits in a more

environment. For a 3D map this means that the most probaklecurate registration: The registration error visuaiirateveals a slight
surface must be a compact, connected, two-dimensionaiss-alignment for the ICP registered dataset, while ournigid-technique
manifold, possibly with boundary, embeddeddid. The first ~ "€slts In @ good alignment over the whole surface.
step towards defining such a prior is to compute the tangent
plane associated with each observed paint A tangent
plane is defined by a 3D point; and normaln;. For all Hence the most probable arrangement given only this prior
points we choose a local neighborhodd of fixed diameter is when all points are located on the same one-dimensional
(typically ¢ = 10...20 points). The centep; is taken to Mmanifold. The point motion will be constrained due to the
be the centroid ofN., and the normal; is determined dependence of measurement and pose. In fact, a movement
using principal component analysis [26]: the eigenvecitnw Of a point will create a counter potential for the point and
the smallest eigenvalue corresponds to the nomnmalThe for the corresponding pose to comply with the measurement
projected distance; of the point onto its tangent plane is model. In other words, maximizing the posterior probapilit
defined by the dot product: Eq. (1) will lead to a set of poses and map features that best
explain the measurements as well as the prior model.

di:(mi—oi)-ni. (
Now we can define a Gaussian type manifold prior of the o
form: B. Optimization
: 2
P (m) :aneXp{—2J }’ ®) First we use the position estimates of the navigation
4 m

system as an initial estimate far;., and the measurement
where o,,, is the valriance of tangent plane distances anghodel to calculate and initial estimate for;.;. Next, we use
Nm = I1; (6mV27)  is a normalization factor. a non-linear conjugate gradient variant to find the pararsete
Fig. 4 shows the properties of this prior. The observedhich maximize the log-likelihood op (x1.;, m|uy.¢, Z1.4).
points are drawn to their corresponding tangent plane$he result of this optimization is presented in Fig. 5.



V. GEOMETRY RECONSTRUCTION

In our system, we use an algorithm which does no.
make any prior assumptions about connectivity of points
This volumetric approactor surface reconstruction is more
efficient in situations where multiple scans are taken of th
same surface as the 3D points are accumulated into vox
grid structures first.

An important tool for surface reconstruction from unorga-
nized points is the signed distance functiopnR? — R that _ . . o

. . . Fig. 6. Volumetric surface reconstruction based on oriepigdts.
measures for each point the signed distance to the surface.
The implicit surfacesS is defined as a zero-set of this scalar
functionS : ¢ (x) = 0 with x € R3. The aim is to construct a

smooth volumetric field functiog (x), such that the zero-set Eq. (6) is a normalized weighted average whete is a
approximates the real surface as closely as possible. >

' . . spatial Gaussian that decreases the influence of distant cells,
The first step of our surface reconstruction approach is té)

- . . . -, a Gaussian that decreases the influence of ¢ellith
calculate a 3D indicator functiofy (defined as 1 for points " | diff f Unlike the G ian fi
inside the model, and 0 for points outside). Kazhdan et a? norma vec’For ifferent rom... i e the aussian liter

’ . our bilateral filter takes the variation of normals into ascb

[27] show that there exists an integral relationship betwee
in order to preserve sharp features.

points sampled from the real surface and this indicator , ; . .
function. Specifically, they found that the problem of finglin Opce the vector T'elq IS defmegl for egch g”d node, the
the indicator function reduces to finding the scalar furn:tiograOIIent field of our indicator function defined in Eq. (4) can
whose gradient best approximates a vector fiéldefined be efficiently represented as linear sum of all node funstion
%‘y the scan points, i. enin |[Vy — V| Now, we can solve the indicator functiop such that the
Since the gradient vectors of the binary indicator l‘uncgra(.jlent ofx is closest toV. -
tion would be unbounded at the surface, we convojve Finally, to extract the iso-surfac& from the indicator
’ function, a method similar to thiglarching Cubesalgorithm

with a smoothing filterf” and consider the gradient of the ; . . )
g g 9] is used. This method creates vertices at zero-crossihg

smoothed function. One can show [27] that the gradient (;? ) .
along edges of the grid nodes. The vertices are connected

the smoothed indicator function is equal to the smoothed ¢° | h th . ifold aloai
surface normal field: to triangles such that a continuous manifold alofigis

formed.
V(X*F)(Q)=/F(q)Ns(p)dP%V(q) 4)
s VI. TEXTURE RECONSTRUCTION
whereq € R? and Ns (p) is the surface normal gt € S. | lor i f diaital
The surface normal field can be best approximated by the h our system, we capture color images from a digita

oriented scan points. In other words, the oriented point—sarﬁamera t(t)getthter tW'th the geohmehtry. We use dtheste tan a%eDs
ples can be viewed as samples of the gradient of the model® "éconstruct texture maps which are mapped onto the

smoothed indicator function. If we apply the divergencémdel to generate a greater realism. Our texture recon-

operator on both sides of Eq. (4), the variational problerﬁtrUCtion approach consists of the following stepsrface
transforms into a standard Poissor’1 problem: segmentationsurface unfoldingmesh re-parameterization

color reconstructionandcolor blending
Ax*xF)=V-V 5)

as proposed by Kazhdan et al. [27], the bilateral filter of

which can be solved efficiently by discretizing the 3D spacé" Surface Segmentation

into a regular gridG and using this grid as a space of The first subproblem for texturing a complex 3D surface
functions. For each grid celt, we setF, : R® — R to is finding a surface partitioning. We seek to break the serfac
be the smoothing function for a local patch. We chodse into several regions such that the distortion when flatgnin
to be abilateral filter [28] centered about the cell's centroid each region onto a plane is sufficiently small while the
o. of the following form: number of regions remains small at the same time. Since
1 planes are developable surfaces (with zero Gaussian curva-
Fela) =~ > Go. (loc—al) Go, (In.-ni)n;  (6) ture) by definition, one possible approach is to segment the

1ieg surface into nearly planar regions. We employ an increnhenta

where G, (z) denotes a Gaussian kernel, is the cell’s clustering approach with a subsequent merging strategy.
normal vector andy, is a normalization factor: Regions are grown from randomly chosen seeds and adjacent

faces with similar surface normals are iteratively added. A

Wq = Z Go, (lloc —al) Go,, (Ine - 1) - () major problem of this segmentation procedure is the rewylti
i€g over-segmentation. In order to reduce the over-segmentati
The parameters, ando,, will measure the amount of filter- we append an optimization procedure to merge segments by
ing for the normal field. Similar to a Gaussian convolutiorincorporating information about their similarity.



surface segmentation surface unfolding color reconstruction color blending

Fig. 7. For the texture reconstruction the mestségmentednto nearly planar regions and each regioruifoldedonto a 2D plane. The texture of
each region igeconstructedrom all camera images observing this part of the surface aededhulting color composite slendedafterwards to avoid
discontinuity artifacts.

B. Unfolding coordinate to interpolate the mappirfgat the point's coor-

Given a set of disjoint surface regions, we compute ginates. Grid points which are not part of the mapped surface

mapping from each surface point of a region to the texturd'® discarded.

domai_n. A rathe_r simple Way_for constructing such a paramey  qjor Reconstruction

terization of a triangle mesh is based on the fact that the pre ] o ) )

viously described segmentation procedure results in almos Knowing the pose and the intrinsic calibration of our
planar surface segments. We can find the best fitting plane§fanner allows us to project any 3D surface point into
a least squares sense by usprincipal component analysis any of_the o_rlglnal camera images to re_ztrleve t_he color
(PCA). The result is an orthogonal linear transformatign ~from this particular view. However, every view carries only
that transforms the data poimt; = (z:,v:,2)T t0 @ new mformauqn on a part qf th_e_recqnstructed_ su_rface. To_ find
coordinate systenp; = (7,4, %:)" such that the greatest OUt if a given SQ point is visible in a certain view, we fws?
variance of the data is along the first coordinate and trfansform the point into the camera coordinate system using
smallest variance along the third coordinate. Then a mappid€ known view pose. Next, we use the intrinsic camera
can be defined by projecting the transformed coordinat&&libration to project the point to pixel coordinates. Ieth

onto the plane spanned by the first and the second coordin&gsulting coordinates are valid (i. €. in the range of thegena
axis: dimensions) we can conclude that the 3D point is in the

7 1 0 0\ . camera’s view frustrum. However, the environment geometry
u; = (ﬂz) - (0 1 0) pi - (8 possibly creates complex occlusions and makes it difficult t
recognize if a 3D point was truly observed by the camera.
Even though this method does not guarantee to result inTg test if the 3D point is occluded in this view we trace
bijective mapping, we can easily check this criterion fartea the ray originating at the point to the center of the camera
mapping. In a bijective map, the order of the triangle vesic and determine if it intersects with any surface. This test ca
(anticlockwise) will be preserved. In practice, the magpinpe efficiently performed using the GPU’s occlusion culling.
is always bijective since the segmentation algorithm tesuljn many cases, a 3D point is visible from more than one
in almost developable regions. view and in this case we reconstruct the color from the view
closest to the 3D point.

C. Mesh Re-parameterization

After having determined a mapping for each segment: Color Blending
we re-parameterize the mesh to obtain a densely sampledSince the reconstructed texture maps are composites from
surface. For the re-parameterization we use an equidistantltiple camera images, discontinuity artifacts usualé b
point grid in texture space where each grid point correspondome visible. The reason for those artifacts is that theaserf
to a texture pixel. The space spanned by this grid will beconmreflectance varies by distance and angle of incident. For a
our texture spac{ . consistent texturing we want to minimize the visibility of
In order to determine if any; = (u;,v;)T is inside or these discontinuity artifacts. We approach this problem by
outside of a mapped triangle, we calculate the barycentritsing a blending technique, which globally adjusts the rcolo
coordinate. The barycentric coordinate of the pgintwith  of all pixels.
respect to the vertices,, vo, andvs of a triangle is a triplet ~ Our algorithm extends the ideas of [30] to use a Poisson
of values,{b1, by, b3}, such thatp; = byvy + bavy + b3vs,  formulation for our multi-view blending problem. The pro-
with b; + by + b3 = 1. p; lies inside the triangle ib;, b5, cedure is as follows: for a texture with regions reconsedct
and b3 are positive. In this way, we find the correspondingrom N camera images, we can treat the regions as separate
triangles for all points of the grid and use the barycentrifunctions: fi.,y. Now, let ;.5 be the definition space of
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Fig. 8. The texture blending globally optimizes the textumdoc and

removes discontinuities at boundaries between texturemegeconstructed
from different camera images. The image in the middle shows tbenre

structures, turned out to be problematic. The reconsbmcti
typically fused multiples of such structures into a single
blob or merged them with a nearby wall. Improvements are
certainly possible by scanning higher resolution, with the
obvious drawback of increased memory requirements and
extended acquisition and processing times. For the finpl ste
of model reconstruction, we found that the automatic textur
reconstruction procedure results in high-quality teximagps

structed texture and the right image the texture after biendi . . .
9 9 o in only 15 minutes for the Bosch dataset. Some failures led

to a distorted, unrealistic looking texture and were caused
by inaccurately reconstructed geometry.

VIII. CONCLUSION
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