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Abstract— In this article we investigate the representation
and acquisition of Semantic Objects Maps (SOMs) that can
serve as information resources for autonomous service robots
performing everyday manipulation tasks in kitchen environ-
ments. These maps provide the robot with information about
its operation environment that enable it to perform fetch and
place tasks more efficiently and reliably. To this end, the
semantic object maps can answer queries such as the following
ones: “What do parts of the kitchen look like?”, “How can a
container be opened and closed?”, “Where do objects of daily
use belong?”, “What is inside of cupboards/drawers?”, etc.

The semantic object maps presented in this article, which we
call SOM+, extend the first generation of SOMs presented by
Rusu et al. [1] in that the representation of SOM+ is designed
more thoroughly and that SOM+ also include knowledge about
the appearance and articulation of furniture objects. Also, the
acquisition methods for SOM+ substantially advance those
developed in [1] in that SOM+ are acquired autonomously and
with low-cost (Kinect) instead of very accurate (laser-based) 3D
sensors. In addition, perception methods are more general and
are demonstrated to work in different kitchen environments.

I. INTRODUCTION

Robots that do not know where objects are have to search

for them. Robots that do not know how objects look have to

guess whether they have fetched the right one. Robots that do

not know the articulation models of drawers and cupboards

have to open them very carefully in order to not damage

them. Thus, robots should store and maintain knowledge

about their environment that enables them to perform their

tasks more reliably and efficiently. We call the collection

of this knowledge the robot’s maps and consider maps to

be models of the robot’s operation environment that serve

as information resources for better task performance. Robots

build environment maps for many purposes. Most robot maps

so far have been proposed for navigation. Robot maps for

navigation enable robots to estimate their position in the

environment, to check the reachability of the destination and

to compute navigation plans. Depending on their purpose

maps have to store different kinds of information in different

forms. Maps might represent the occupancy of environment

of 2D or 3D grid cells, they might contain landmarks or

represent the topological structure of the environment. The

maps might model objects of daily use, indoor, outdoor,

underwater, extraterrestrial surfaces, and aerial environments.

0Both leading authors contributed equally to this work.
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Example PROLOG query to retrieve an articulation 
model:
?- rdf triple(’in-ContGeneric’, cup67, ?B),
    rdf has(?B, openingTrajectory, ?Traj),
    findall(?P, rdf has(?Traj, pointOnTrajectory, ?P),
   ?Points).

Results of further PROLOG queries:

Where does the 
bottle of milk
belong?

What is the structure
of the objects?
cupboard, door, 
handles

Is object o placed 
correctly?

Kinect View

Data Acquisition

S

O
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Fig. 1. Building of a SOM+ map in a kitchen environment (top), SOM+

map representation (middle) and a set of robot queries made possible due
to such powerful representation (bottom).

Robots build environment maps for many purposes. Most

robot maps so far have been proposed for navigation. Robot

maps for navigation enable robots to estimate their posi-

tion in the environment, to check the reachability of the

destination and to compute navigation plans. Depending

on their purpose maps have to store different kinds of

information in different forms. Maps might represent the

occupancy of environment of 2D or 3D grid cells, they might



contain landmarks or represent the topological structure of

the environment. The maps might model objects of daily

use, indoor, outdoor, underwater, extraterrestrial surfaces,

and aerial environments.

A research area that has received surprisingly little atten-

tion is the automatic acquisition of environment maps that

enable robots to perform human-scale manipulation tasks,

such as setting a table, preparing a meal, and cleaning up.

In our research we investigate semantic object maps

(SOM+s), which are a subcategory of maps that store infor-

mation about the task-relevant objects in the environment,

possibly including geometric 3D models of the objects, their

position and orientation, their appearance, and object cate-

gory. We focus here on semantic object maps that represent

all the furniture entities of kitchen environments including

cupboards, electrical devices, tables, counters, positions, ap-

pearances, and articulation models.

Overview of our system for the generation of SOM+ maps

is depicted in Fig. 1 where a PR2 robot acquires the data

using an RGBD sensor in a kitchen environment (top), the

resulting representation of an environment as a SOM+ map

is in the middle and a set of example queries that SOM+

map provides to the robot is shown in the bottom. We

can see that the SOM+ map is an abstract representation

of the environment that represents the environment as a

hierarchically structured object where the parts themselves

are objects that have a geometric 3D model, an appearance,

and a 3D position and orientation. In addition, objects might

have associated articulation models that tell the robot how

they can be opened and closed, which is visualized by the

yellow trajectories in the bottom part of the figure.

In this article we investigate and describe how SOM+

maps can be represented and how the representations can

be acquired autonomously.

In this context the key contributions of this article are:

• a functional end-to-end system that covers all steps

required to automatically reconstruct textured SOM+

models of kitchens, annotates them with the functional

and semantic information and articulation models for

opening and closing drawers and doors;

• methods for acquiring accurate environment maps with

low-cost RGBD sensors by using vision and active

manipulation actions such opening drawers and doors;

• a formal language based on the symbolic knowledge

bases for the representation of SOM+ maps;

• an application level with a rich set of task queries that

the system can answer and thus enable the personal

robot to carry out every day manipulation tasks.

We validate the concept of SOM+ maps and the robot

system for their acquisition in extensive experimental studies,

in which the robots operate autonomously to acquire SOM+

maps in 5 kitchens.

The remainder of the article is organized as follows. In

Sec. II we introduce our representation language for SOM+

maps and explain how the maps are organized and how

different types of information are stored and handled. Sec. III

will present the system integration by i) giving an overview

of the SOM+ map acquisition step and ii) discussing the data

interpretation step. Sec. IV presents the empirical evaluation

and explain example queries and put them to use. In the final

two sections we will conclude and give an overview of the

related work respectively.

II. REPRESENTATION OF SOM+
MAPS

We represent SOM+ maps as symbolic knowledge bases

that contain facts about objects in the environment and that

link objects to data structures such as appearance mod-

els or SIFT features which can be directly used by the

robot’s perception system to recognize the respective ob-

jects. Encoding maps into symbolic knowledge bases rather

than lower-level data structures has two main advantages:

First, it allows to have a uniform interface for querying

for information, combining low-level information like the

dimensions and poses of objects with semantic information

about their properties. Second, this approach facilitates the

integration of background knowledge from other sources like

the WWW [2] or common-sense knowledge bases [3]. This

enables the robot to apply this knowledge to reason about

objects in the map, for example to infer problems that can

occur when operating the dishwasher.

More formally, we consider a SOM+ map to be a pair

SOM+ = 〈SOM+KB, C〉, where SOM+KB is the knowl-

edge base representing the environment and C is a set of

inference methods that can infer knowledge that is implied

by the knowledge base but not directly stored. For example,

C includes a method to infer whether two positions p1 and

p2 satisfy the qualitative spatial relationship “on top of”.

Fig. 2. Part of the ontology of household appliances and entities of
furniture. Super-classes of e.g. HumanScaleObject have been omitted for
better readability.

The knowledge base SOM+KB itself is formalized as

a triple 〈T ,A,S〉 where T is a terminological knowledge

base that specifies the categories of objects that are used to

represent the environment. A denotes assertional knowledge,



for example that Refrigerator67 is a physical object in the

environment and an instance of concept Refrigerator. Finally,

S is spatial knowledge that asserts the pose of Refrigerator67

in the environment. The different components of a SOM+

knowledge base are depicted in Fig. 2.

The encyclopedic knowledge stored in T provides defi-

nitions of classes of objects and their properties, similar to

those that can be found in a dictionary. It is very useful

as a common vocabulary to describe the robot’s knowledge.

The different classes are arranged in a hierarchy, and are

inter-connected by roles, a structure called an “ontology”. A

small part of this ontology, describing entities of furniture

and household appliances, is shown in the upper part of

Fig. 2. The major part of T is prior knowledge that is already

available before the map has been built.

The objects in the semantic map are represented as in-

stances of the semantic classes in T and form the assertional

knowledge base A. It contains information about their com-

position from parts, e.g. that Refrigerator consists of a box-

shaped frame, a door, a hinge, and a handle, that the door is

rotationally connected to the frame by the hinge, and that the

handle is attached to the door. Each of these components is

described as an instance of the respective semantic class with

all of its properties, e.g. the information that a refrigerator is

used as storage place for perishable items, or that an oven can

be used for heating food. The elements of A are generated

from the perception system and can be passed as arguments

to the robot executive. They are thus grounded in both the

perception and in the action execution system.

The spatial knowledge S includes both metric and qual-

itative spatial information about the poses of objects in

the environment. Metric object poses are determined by

the mapping procedure (Sec. III-B) and are stored in the

knowledge base. Additional qualitative descriptions, like

“on the table” can be computed as a different view on

the data. These more abstract descriptions are not directly

stored in the knowledge base, but computed at query. This

approach helps to avoid inconsistencies due to duplicate data

storage [4]. The computational methods are part of the set

of inference procedures C, which further includes methods

to e.g. transparently convert units of measure (Sec. II-B).

The SOM+ map provides a tell-ask-interface to other

components in the system. The tell-interface allows to add

knowledge to the knowledge base and is mainly used by the

mapping component: Whenever new objects are detected in

the environment, they are added to the knowledge base. The

ask-interface provides reasoning services to the robot’s exec-

utive and to other components that require map information.

A. Object Representation in SOM+ Maps

Most of the objects found in semantic maps of household

environments are furniture entities and household appli-

ances – which are complex, composed objects consisting

of several parts (Fig. 3). Complementary to this part-of

hierarchy, the connections between parts in terms of links

and joints describe a kinematic chain. In the example, hinges

are described as parts of the door, which is linked to the

refrigerator’s body with the hingedTo relation:

Fig. 3. Hierarchy of part-of relations between the different object
components in the semantic map and a grounding example for doors and
handles.

I n d i v i d u a l : semant icmap14
Types :

Semant icEnvironmentMap

I n d i v i d u a l : R e f r i g e r a t o r 6 7
Types :

R e f r i g e r a t o r
Fact s :

d e s c r i b e d I n M a p semant icmap14
wid th ” 0 . 5 1 ” ˆ ˆ Meter
d e p t h ” 0 . 5 9 ” ˆ ˆ Meter
h e i g h t ” 0 . 7 8 ” ˆ ˆ Meter
p r o p e r P h y s i c a l P a r t s Door70
p r o p e r P h y s i c a l P a r t s Hinge70

I n d i v i d u a l : Door70
Types :

Door
Fact s :

w id th ” 0 . 5 1 ” ˆ ˆ Meter
d e p t h ” 0 . 0 1 ” ˆ ˆ Meter
h e i g h t ” 0 . 7 8 ” ˆ ˆ Meter
hingedTo R e f r i g e r a t o r 6 7
p r o p e r P h y s i c a l P a r t s Handle160

An explicit description of the units of measure is important

for the representation of spatial information in order to

correctly interpret coordinate values. In the proposed repre-

sentation, all numeric values can be annotated with the unit

of measure that is being used. The units are described in

the extensive QUDT ontology1 including conversion factors.

Compatible units, such as lengths, can be transparently

converted into each other. For example, if the map contains

dimensions and positions in meters, the user can query

for information in feet and will automatically receive the

converted values.

B. Spatio-temporal Object Pose Representation

The hierarchical representation introduced in the previous

section qualitatively describes the composition of the envi-

ronment out of objects and their parts, but does not specify

their poses. We represent the pose information separately

to account for object poses that change over time. Such

a spatio-temporal representation is especially important for

objects that are regularly moved, but it can also describe

static objects as well as movable parts of static objects, such

as the furniture doors.

We realized the spatio-temporal aspect by reifying the

event that created some belief about an object pose, e.g. the

1http://qudt.org/



detection of an object at some position. Instead of storing

the information that an object “is at location A”, the system

thus describes that it “has been detected at location A at

time T”. This allows to store multiple detections of the

object at different poses. In a naive implementation, attaching

multiple poses to one object would lead to inconsistencies.

The following code describes the detection of an object

that is modeled in the knowledge base: An instance of a

SemanticMapPerception is created for each detection (per-

ception24), and is annotated with the time at which the

perception has been made (timepoint24), the pose at which

the object was estimated to be (pose24), and the object

instance that has been perceived (Refrigerator67).
I n d i v i d u a l : p e r c e p t i o n 2 4

Types :
S e m an t i c M a p P e r ce p t i o n

Facts :
e v e n t O c c u r s A t pose24
ob j ec tAc tedOn R e f r i g e r a t o r 6 7
s t a r t T i m e t i m e p o i n t 2 4

I n d i v i d u a l : pose24
Types :

Pose3D
Facts :

m00 ” 1 . 0 0 ” ˆ ˆ f l o a t
m01 ” 0 . 0 0 ” ˆ ˆ f l o a t

By default, system determines the pose of an object based

on the most recent detection, but if needed, it can also go

back in time and reconstruct previous world states.

C. SOM+ Inference Methods

Using the inference methods C, the system can infer novel

statements from the information in the map. Let us consider

the computation of the “inside” relation as an example. If

this relation holds can be calculated based on the poses and

dimensions of two objects. Based on the spatio-temporal

representation of object poses described in the previous

section, such qualitative relations can be evaluated both for

the current and for previous world states.

We use the holds(rel(?A, ?B), ?T) predicate to express

that a relation rel between ?A and ?B is true at time ?T.

The following Prolog code computes the “inside” relation in

a simplified way (not taking the rotation of the objects into

account) by comparing the axis-aligned bounding boxes of

the inner and outer object to check whether one contains the

other. First, the latest perception of each object before time

?T is determined using the object detection predicate. The

poses where objects have been perceived are read using the

eventOccursAt relation. Then, the system reads the objects’

positions and dimensions, and compares the bounding boxes.

h o l d s ( i n C o n t G e n e r i c ( ? Inne rObj , ? Oute rObj ) , ?T ) : -
o b j e c t d e t e c t i o n ( ? Inne rObj , ?T , ? VPI ) ,
o b j e c t d e t e c t i o n ( ? OuterObj , ?T , ?VPO) ,
r d f t r i p l e ( even tOccur sAt , ?VPI , ? I n n e r O b j P o s e ) ,
r d f t r i p l e ( even tOccur sAt , ?VPO, ? Oute rObjPose ) ,

% r e a d t h e c e n t e r c o o r d i n a t e s o f t h e i n n e r e n t i t y
r d f t r i p l e ( poseX , ? Inne rObjPose , ? IX ) , [ . . . ]

% r e a d t h e c e n t e r c o o r d i n a t e s o f t h e o u t e r e n t i t y
r d f t r i p l e ( poseX , ? OuterObjPose , ?OX) , [ . . . ]

% r e a d t h e d i m e n s i o n s o f t h e o u t e r e n t i t y
r d f h a s ( ? OuterObj , wid thOfObjec t , ?OW) , [ . . . ]

% r e a d t h e d i m e n s i o n s o f t h e i n n e r e n t i t y
r d f h a s ( ? Inne rObj , wid thOfObjec t , ?IW ) , [ . . . ]

% compare bounding boxes
>=((?IX - 0 .5∗? ID ) , ( ?OX - 0 .5∗?OD) ) ,
=<((? IX + 0 .5∗? ID ) , ( ?OX + 0 .5∗?OD) ) ,
[ . . . ]
? I n n e r O b j \= ? OuterObj .

III. ACQUISITION OF SOM+ MAPS

In our research we investigate domain specific map ac-

quisition. This means that we make assumptions/assertions

about the environments such as the existence of horizontal

planar surfaces at table height, or the existence of front faces

of furniture pieces that contain doors and drawers and let the

interpretation algorithms use this prior knowledge to infer

much richer environment models that contain all the furniture

objects and structures introduced in Sec. III-B.

The version of our mapping system described in this paper

makes a set of assumptions reasonable for typical kitchens,

which include the following ones. (1) Kitchens have vertical

planar walls (outmost boundaries) and kitchens have planar

floors (the ground plane) and ceilings. (2) Front faces of

furniture are vertical planes often in front of walls. Front

faces of furniture’s are typically rectangular and contain

doors and drawers. Front faces of drawers and doors are

parts of containers (typically used for placing objects inside).

(3) Doors typically have handles and hinges, drawers have

handles. Both can be opened (by pulling the handles). Some

cupboards have tabletops that are planar surfaces in table

height. Tables are tabletops standing on legs. (4) Some

cupboards have special purposes: fridge, oven, microwave,

dishwasher, etc. They are specializations of boxed containers.

(5) Task-relevant objects are liftable and stand on table tops

and shelves. (6) All others “object” structures are obstacles.

Our system is currently specialized for the kitchenette parts

of household environments, inclusion of other locations,

semi-static (e.g. chairs) and dynamic objects we address in

the separate papers [5] and will integrate them in the future

work.

We will come back to the issue that these assumptions

are of heuristic nature in Sec. V and outline how the next

generation of the system is supposed to generalize from this

overspecialization.

The SOM+ mapping algorithms exploit these assumptions

to better and faster process the raw sensor data through

registration, plane fitting, etc and to generate and validate

object hypotheses and infer better models of them.

Surface 
Reconstruction

(III-A2)

Texture
Re-projection

(III-A3)

Registration
(III-A1)

Next Best View
Planning
(III-A4)

Articulation
Model

Learning
(III-B3)

Detection of 
Relevant Planes

(III-B1)

Detection of 
Handles
(III-B2)

SOM+ Map
Implemented in

KnowRob
(Section II)

Door and Drawer
Hypotheses

(III-B4)

Object Detection
And

Recognition

Object of Daily 
Use Detection 

And Recognition
(Pangercic, IROS2011)

Door and Drawer
Hypotheses
Validation

(III-B5)

Ask-Tell
Interface

Pre-processing

Acquisition

Interpretation

Acquisition

Fig. 4. System integration described in Sec. III. Module for objects of
daily use detection and recognition is part of the system but not discussed
in this paper due to space constraints.

In order to acquire a SOM+ map the robot has to explore

and solve a number of perceptual tasks in order to obtain



the necessary information pieces. The overall structure of

the map acquisition process is illustrated in Fig. 4. The first

phase in doing so is to obtain an accurate, smoothed and

textured triangular 3D mesh of the environment where holes

in the mesh are eliminated as much as possible (upper block

in Fig. 4). The result of this phase is a mesh representation

that on the one hand is much more compact than a point

cloud representation and on the other hand forms the basis

for the detection, categorization and recognition of furniture

objects (lower block in Fig. 4). These two blocks will be

further detailed in the following two subsections.

The SOM+ mapping system is designed for autonomous

manipulation platforms (but not limited to) that are equipped

with a low-cost RGBD sensor on a pan-tilt basis (we use a

Personal Robot 2 (PR2) with a head-mounted Kinect sensor).

A. Acquisition of the Basic Mesh Representation

The robot acquires an accumulated RGBD point cloud

by exploring the environment and panning and tilting its

head in order to cover the desired view frustum. The raw

data are processed using a statistical noise removal kernel

and then run through a Moving Least Squares module.

These pre-processing steps enable a robust alignment of the

point clouds and facilitate mesh reconstruction and texture

reprojection.

1) Registration: To create a consistent and accurate 3D

mesh model, the individual point clouds views are trans-

formed into one common coordinate system and merged

with each other. The merging step is performed through

the geometric alignment of three-dimensional views using

the estimated robot position as an initial guess using a

variant of the Iterative Closest Point (ICP) algorithm [6].

Here we employ the more robust point-to-plane variant of

ICP that uses a LevenbergMarquardt2 algorithm to minimize

distances between points in one point cloud to respective

corresponding tangent planes in the other point cloud. To

avoid the accumulation of registration errors over many

scans, which could cause inconsistencies in the map, we

globally optimize the registration in a second step using a

graph optimization technique [8]. In the recent version of the

system we also deployed a joint optimization method [9] in

order to combine dense point cloud and visual feature data in

one optimization step to calculate the transformations. This,

so called RGBD-based registration, on the one hand enables

us to perform mapping with the handheld camera (without a

robot) and on the other hand generates maps with an accuracy

under 1cm which is enough for the robot to reliably perform

useful tasks such as opening the drawers (see the bottom row

of Fig. 5.

2) Surface Reconstruction: To obtain a compact and fast-

loading 3D model of the environment we use triangle meshes

as our geometric and visual representation for SOM+ maps.

We apply a volumetric approach for reconstructing triangle

meshes from the point clouds generated by the registration

module. The first step of this approach calculates a 3D

indicator function with positive values for points inside the

2Note that for the point-to-plane case, no closed-form solution is available
which rules out the use of e.g. singular value decomposition method [7].

Fig. 5. Left-column: Testbed kitchens at TUM and Bosch RTC. Middle-
column: Poisson-based surface reconstruction. Right-column: Blending-
based texture re-projection on the left surface mesh. Bottom-row: Data of
the TUM kitchen obtained with the handheld Kinect sensor and registered
using the RGBD-based registration.

model, and negative values for points outside. Kazhdan

et al. [10] proposed an efficient way of calculating this

indicator function on a regular grid constructed of smoothly

overlapping volumetric field functions using a system of

Poisson equations. The second step extracts the iso-surface

of this indicator function by creating mesh vertices at zero-

crossings along edges of grid cells [11]. The middle column

in Fig. 5 shows the reconstructed triangle meshes of five

kitchens. Each mesh consists of roughly 50K triangles while

the raw point cloud is made up of more than 18M points.

3) Texture Reconstruction: In general, the environments

are made out of a variety of different materials which

influence their appearance. Realistic reconstruction and re-



production of the surface appearance greatly enhances the

visual impression by adding more realism and can thus

be used for segmentation of surfaces, environment change

detection, scene analysis or for object of daily use recogni-

tion. To achieve the texture reconstruction we capture color

images together with point clouds. We use those images to

reconstruct texture maps that are mapped onto the 3D mesh.

The first step of texture reconstruction computes a mapping

for each mesh 3D vertex position into the 2D texture domain.

In our system we use a least-squares method for finding

the conformal mapping that minimizes distortions introduced

by the 3D-2D mapping. When stitching multiple images

into a texture, discontinuities on boundaries between images

may become visible. For a consistent texturing we want to

minimize the visibility of those undesired artifacts. Here we

employ the blending technique proposed in [12] to globally

adjust the color of all pixels simultaneously. The result is

a texture composite without visual boundary artifacts. The

right column in Fig. 5 presents the final texture mapped

meshes.

4) Next Best View Planning: In this paper we focus on the

SOM+ maps of the kitchenette parts of indoor environments.

Whole room data acquisition that requires next best view

planning was presented in our earlier work [13] and is based

on the information gain approach in which we use costmaps

to find those poses that guarantee enough coverage of the

unknown space as well as sufficient overlap with the already

containing data for successful registration.

B. Interpretation of SOM+Maps

1) Detection of Relevant Planes: Given the mesh gen-

erated by the texture reprojection module, our system first

extracts relevant planes from it, categorizes them as walls,

floor, ceiling, tables or other horizontal structures and doors

or drawers. The latter is achieved by first locating the

relevant planar structures, testing for the existence of handles

and segmenting the doors and drawers first passively, and

then actively through an interaction of the robot with the

environment. As an exhaustive search for all planar structures

is computationally intractable, we only search for those that

are aligned with the walls of the room. The alignment of the

latter is determined using a box fitting approach as proposed

in [14]. Since in many indoor environments, most of the

surface normals estimated at every point coincide with one

of the three main axes of the room, these directions can be

used to limit the plane extraction.

2) Detection of Handles: We identified two types of

handle appearances3 that have different characteristics with

respect to sensor data: handles that have specular reflection

and the ones that do not. To tackle these two distinct cases we

propose a two-fold approach that first tries to recognize and

localize a handle in a 3D model of the given environment.

Shall the latter fail we resolve to finding the handle in the

parts of the 3D model that lacks range measurements due to

the reflection of the sensor’s projected infrared light pattern

3Please note that we only considered handles that correspond to the
Americans with Disabilities Act http://www.ada.gov/pubs/ada.
htm.

on specular surfaces [15]. We assert the handle’s pose and

dimension as SOM+’s assertional knowledge according to

Fig. 2. The example result of this handle detection is depicted

in the bottom of Fig. 3. Erroneously detected handles could

stem from specular flat surfaces or elongated objects (e.g.

metal bars). In the first case the gripper opening distance

after the grasp must be non zero and in the second case

we abort opening motion if the robot exceeds an empirically

determined force threshold.

3) Articulation Model Learning: To open the cabinets

we use a controller developed by Sturm et al. [16]. The

controller assumes that the robot has already successfully

grasped the handle of an articulated object and that a suitable

initial pulling direction is known. The robot then pulls in

this direction using an equilibrium point control (EPC) and

observes the resulting motion of its end effector. From this

partial trajectory, it continuously (re-)estimates the kinematic

model of the articulated object. The robot uses the kinematic

model to predict the continuation of the trajectory. To deal

with the workspace limits of the manipulator we make use of

a secondary controller that moves the omni-directional base

of the robot so that the reachable volume of the manipulator

is maximized. After the motion of the end effector has come

to a rest, the range of valid configurations of the articulated

object is estimated. In sum, this gives us the full kinematic

model of the articulated object. Finally, we sample the so-

generated trajectory and store the poses of the sampled points

on the trajectory as SOM+’s spatial knowledge according to

Fig. 2. An example of the model learning step is visualized

in Fig. 6.

Fig. 6. The PR2 robot operates the cabinet in the Bosch RTC kitchen
and learns the kinematic model (See also a video). Left column depicts a
pair of doors with the handle with specularity (top) and a successful handle
detection (bottom). Right column shows two snapshots from the opening
sequence.

4) Generation of Door and Drawer Hypotheses: This

module, initially proposed in [13], uses mesh vertices as

seed points around footprint of handles to estimate an initial

model of the color distribution of the door. The model

consists of the intensity values’ median ĩ and median average

distance (MAD). The seed regions are expanded by adding

neighboring vertices whose colors match the estimated color



model, using a basic region growing algorithm based on the

assumption that vertices on the door border are surrounded

by vertices with different color. The color model for a

region is updated after all possible vertices are added, and

the process is repeated until the values of ĩ and MAD
stabilize. After this step, fixtures that produce overlapping

segments are marked for further examination, while the rest

are added to the SOM+ map, along with the rectangular

approximations to the found planar segments.

5) Active Door and Drawer Hypotheses Validation

through Interaction: Concurrently with the learning of the

articulation models we also make use of the movement

of the respective front of a cabinet and accept and reject

the hypothesis generated in the previous subsection. To

achieve this we use a temporal difference registration of

two point clouds (of a closed and an open cabinet), using

a search radius parameter of 0.5 cm, which is above the

noise level of the sensor data4 for the distances up to 1.5m.

We project the points that only appear in the second point

cloud (corresponding to the door or the drawer planeSEG)

by applying the inverse of the transform between the first

and the last pose of the stored opening trajectory. We then

obtain the convex hull around such projected planePROJ ,

and assuming an environment based on rectangular furniture,

we extract the width and the height of the cabinet front.

For prismatic joints such as in case of drawers, we compute

the distance between the two planes, which gives us the

maximum opening distance and the depth of a drawer. For

rotational joints, we assume that the depth of the cabinet

is the same as the depth of the horizontal surface above

it. We store poses and dimensions of cabinets as SOM+’s

assertional knowledge according to Fig. 2. Result of the final

segmentation is shown in the bottom of Fig. 3.

IV. EXPERIMENTS AND RESULTS

We evaluated the proposed integrated approach in five

kitchens (see Fig. 5) by measuring the quality of the gener-

ated SOM+ map in terms of the handle re-detection and the

re-opening of the doors using learned and stored articulation

models, and by measuring the average run times needed to

generate one instance of SOM+ map. In the accompanying

video we also present a range of possible queries that our

system can answer but are hard to evaluate quantitatively.

A. Door Opening

In this experiment, we had the PR2 robot detect handles

and three times open each of the 22 cabinets within five

different kitchens (see Fig. 5). Due to the PR2’s limited

arm reach, we omitted the cabinets with handles located

above 1.2m and the cabinets positioned in constrained spaces

such as the ones adjacent to walls. The objective of the

experiment was to asses the detection rate of handles given

their apriori poses stored in the SOM+ map, and to evaluate

the robustness of a cabinet opening given their apriori learned

and stored articulation models. The results of the experiment

are presented in Table I. In column four we notice that the

4http://www.ros.org/wiki/openni_kinect/kinect_

accuracy

kitchen #cabinets #trials #handle #opening #opening
detection success success
success (w/o model) (w model)

1 3 9 9 (100%) 8 (89%) 9 (100%)

2 5 15 15 (100%) 15 (100%) 15 (100%)

3 7 21 18 (86%) 19 (90%) 18 (100%)

4 1 3 3 (100%) 0 (0%) 3 (100%)

5 6 18 18 (100%) 14 (78%) 18 (100%)

Total: 22 66 63 (95%) 56 (85%) 66(100%)

TABLE I

RESULTS OF DETECTING THE HANDLES AND OPENING THE CABINETS

BASED ON THE INFORMATION DERIVED FROM THE SOM+ MAP.

detection of the handle only failed three times. All failures

occurred on a cabinet located next to the metal dishwasher

that generated the invalid measurements which our handle

detection algorithm took as a handle hypothesis. Column five

presents the success rate of opening the cabinets without a

priori learned model and column six with the a priori learned

model. Playing back the stored trajectories turned out to be

be 100% successful.

B. Performance Profiling

In Table II we broke down our processing pipeline into

a set of independent components and profiled their per-

formance on Intel Xeon W3520 desktop computer with

2.67GHz processor and 24GB of memory. Total time

amounting to building of one SOM+ map of one kitchenette

from the scratch is 1.2h and the peak memory consumption

of around 12GB incurred during the registration step. The

latter can however be avoided through caching of point

clouds to the disk. Querying times for the information stored

in SOM+ map are around 1s/query.

Component Runtime

Data acquisition and pre-processing 0.1h

Registration 0.4h

Surface reconstruction 0.3h

Texture re-projection 0.3h

Door opening and segmentation 0.1h

Generation of SOM+map 1s

Total 1.2h

TABLE II

EXECUTION TIMES FOR ALL COMPONENTS IN THE PROCESSING

PIPELINE (FIG. 4).

C. SOM+ Example Queries

The bottom part of Fig. 1 and an accompanying video

show different queries that can be answered by the SOM+

map representation. Let us consider the following query as

an example:

? - r d f t r i p l e ( knowrob : ’ in - Con tGene r i c ’ , knowrob : ’ Cup67 ’ ,B) ,
r d f h a s (B , knowrob : o p e n i n g T r a j e c t o r y , T r a j ) ,
f i n d a l l ( P , r d f h a s ( Tra j , knowrob : p o i n t O n T r a j e c t o r y , P ) ,

P o i n t s ) .

It reads the trajectory for opening the container where cups

are stored in by first computing the ’in-ContGeneric’ relation

based on the poses and dimensions of the objects. For the

resulting containers, it is checked whether there is an opening



trajectory attached, and if that is the case, all points on this

trajectory are returned. This query shows how the semantic

map representation can translate qualitative abstract queries

into information that can be used to parameterize the robot’s

actions such as the trajectory. In prior work, we showed

how different kinds of knowledge can be integrated with

semantic maps, such as statistical relational information [4]

or observations of human activities [17]. Please also consult

the video http://youtu.be/B7kMviETh50 for the

whole range of queries and other system details.

V. DISCUSSION

We presented an integrated systems paper for semantic

mapping which enables the robot to build Semantic Object

Maps with rich and powerful queries. We are aware that some

of our perceptual heuristics do not fit (to e.g. old fashioned

doors or doors without handles) and will in the future look

into the ensemble of experts-based methods to alleviate

that. Furthermore, we will also integrate algorithms for the

recognition of beds, chairs, etc to scale towards mapping

of whole apartments. Another avenue worth exploring to

overcome the heuristic nature of the perceptual routines is

to learn probabilistic models for the appearance of furniture

entities. This however requires huge training data bases [5]

and the scaling of probabilistic learning and reasoning.

VI. RELATED WORK

Conceptually the closest to our work is the work done

in project CoSy [18], where they adopted a multi-layered

conceptual spatial model that consists of four maps: metric,

navigation, topological and conceptual one. Their system,

like ours, uses a SLAM algorithm to generate a metric

map. Navigation and topological maps work hand in hand

to classify the places into rooms of various types - a feature

that our system could benefit from. Their conceptual map

is endowed with a fully handcrafted commonsense OWL

ontology of an indoor environment and is thus inferior to

our ontology in KNOWROB [17] which is one of the largest

ontologies for service robots in the world. In addition their

conceptual map currently does not allow for the storage

of articulation models. Galindo et al. [19] present a multi-

hierarchical approach where they connect the spatial and the

conceptual hierarchies via anchoring. Similar to [18] and

in contrast to our approach their map does not represent

intra-room objects. Nüchter et al. [20] propose a semantic

map system which up to the classification into floor, ceiling

and walls is similar to ours. While they integrated object

detection algorithms, on the other hand their representation

language consists of Prolog facts only which is more limit-

ing than our first-order knowledge representation based on

description logics.
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O. M. Mozos, and W. Burgard, “Semantic modelling of space,”
in Cognitive Systems, ser. Cognitive Systems Monographs, H. I.
Christensen, G.-J. M. Kruijff, and J. L. Wyatt, Eds. Springer
Berlin Heidelberg, 2010, vol. 8, pp. 165–221. [Online]. Available:
http://www.pronobis.pro/publications/pronobis2010cogsys

[19] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-
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