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Abstract— Reliability and availability are major concerns for
autonomous systems. A personal robot has to solve complex
tasks, such as loading a dishwasher or folding laundry, which
are very difficult to automate robustly. In order for a robot t o
perform better in those applications, it needs to be capableof
accepting help from a human operator.

Shared autonomy is a system model based on human–robot
dialogue. This work aims at bridging the gap between full
human control and full autonomy for tasks in the domain of
personal robotics. One of the hardest problems for personal
robotic systems is perception: perceiving and inferring about
objects in the robot’s environment. We present a system capable
of solving the perceptual inference in combination with a
human, such that a human operator functions as a resource for
the robot and helps to compensate for limitations of autonomy.

In this paper, we show how a human-robot team can work
together effectively to solve complex perception tasks. We
present a system that asks a human operator to identify objects
it doesn’t recognize or find. In various experiments with the
PR2 robot we show that this shared autonomy system performs
more robustly than the robot system alone and that it is capable
of tasks which are difficult to accomplish by an autonomous
agent.

I. I NTRODUCTION

Many scientists have pointed out the clear benefits of
robots and humans working as partners [1], [2], [3]. The
research fields of Adjustable Autonomy (AA) and Mixed
Initiative Control (MIC) aim at bridging the gap between full
human control and full autonomy. In many AA and MIC sys-
tems, the human operator is in charge of the main operation
and autonomy is gradually added to support the execution
of the operator’s intent. For example, new telepresence
robots support remote navigation with automatic obstacle
avoidance [4]. The local autonomy (obstacle avoidance) of
the robot decreases the cognitive load of the human operator
and increases the effectiveness of the system.

In this paper, we will explore how a human-PR2 team
can work together effectively. Two competing goals need
to be traded off: maximizing the robot’s performance while
minimizing human input. A teleoperated robot will perform
poorly at complex tasks when the human controls have
many degrees of freedom or there are long communication
delays. In such scenarios a high level of autonomy would
be preferable. The human may merely function as a limited
resource for the robot, providing information that may be
used to close a planning, control or perception loop. We will
explore the concept ofshared autonomyin the context of
perception and grasping. Consider the following scenario:

B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker arewith
Robert Bosch LLC at the Research and Technology Center NorthAmerica,
Palo Alto, CA 94304, USA

R
o
b
o
t

H
u
m

a
n

Sensors

Actuators

Perception

Planning

User Interface

Ta
s
k

Perception

Cognition

Goal

Fig. 1. The shared autonomy system model for robotic manipulation. A
human is included to close the perception loop through collaborative object
selection.

The user issues the command, ”fetch my cup from the
kitchen.” The robot would navigate to the kitchen and query
the user to select the cup based on a camera image. The robot
would then be able to autonomously grasp the cup and carry
it back to the user. This human-robot team maximizes the
strengths of the robot (data acquisition, navigation, planning)
and the strengths of the human (cognition, reasoning).

The PR2’s physical capabilities make it well suited for
tasks related to mobile manipulation since it has a mobile
base, two high degree of freedom arms, and large suite of
sensors. In fact, the hardware is not a anymore limiting factor
for many complex robotics tasks. Additionally, the PR2 is a
very high dimensional system that is difficult to remote con-
trol. By combining the PR2’s physical capabilities, the ever-
growing automated functionalities, and a human operator, we
present a system capable of performing mobile manipulation
tasks more robustly. We demonstrate a robot that exhibits
human like intelligence while only requiring a small portion
of a human operator’s attention.

II. RELATED WORK

Autonomous object manipulation has been widely ex-
plored on recent work. Such approaches perform grasp se-
lection using shape primitives [5], matching of known object
models to sensor data [6], or solely by learning grasp points
directly from 2D images [7]. In general, to complete object-
specific grasping tasks manipulation approaches would need
to be combined with an object detection or segmentation
algorithm. There is a large literature on the problem of image
segmentation [8] and range image segmentation [9], but most
previous methods have a limited ability to extract objects



from a cluttered scene. A large source for failures in object
manipulation tasks is the lack of robustness of object de-
tection and grasp selection algorithms. Specifically, systems
that rely exclusively on one sensor modality tend are likely
to encounter problems more frequently [10]. In this paper
we do not add another automatic grasping or segmentation
algorithm. Instead, we present a collaborative system (robot-
human) in order to overcome current limitations of automatic
approaches.

Currently, all robotic systems rely on some combination
of human and machine intelligence. How to best coordinate
these two sources of intelligence has been studied under a
variety of terms including human-robot interaction (HRI),
semi-autonomous control, collaborative control, mixed initia-
tive interaction, adjustable autonomy and shared autonomy.
In this paper we use the term shared autonomy.

The general approach of using human intelligence to
solve ”low-level” computational problems has matured intoa
robust community of human computation markets. Amazon’s
Mechanical Turk is perhaps the best known of several
commercial platforms. Surprisingly, the market that comes
closest to meeting the requirements of a real-time robotics
application is the captcha solving markets which provides
solutions to image recognition problems in real-time (median
response time of 10s) at large scale (1,000,000 images per
day) and low cost ( $0.002 per image) [11]. For experimental
purposes we used an on-site human operator. However, our
approach could be extended to use these human computation
markets. Our platform uses $1 to $2 of electricity per day.
The same amount spent on human computation would buy
500 to 1,000 real-time solutions to image recognition tasks.

The original and still most common approach to shared
autonomy in robotics applications is to assign human op-
erators to supervisory or high level functions and machine
intelligence to lower level functions. Sheridan’s widely cited
description of ”levels of autonomy” [12] implicitly encodes
this approach. This division has been successfully appliedin
many applications, especially in exploration and navigation
tasks [13].

Goodfellow et al. [14] integrated user feedback into a robot
to help with action selection. In this case the robot collects
environment information, analyzes the scene for objects, asks
the human for the appropriate action and then executes that
action. In an example task the robot identifies a number of
bottles and then a human operator selects which bottle the
robot should pick up.

Our system relies on human intelligence to solve a set
of low-level perceptual tasks and uses machine intelligence
for the remaining high and low level functions. This paper
will detail the advantages of this approach. In brief, out
shared autonomy concept allows humans to solve problems
which are very difficult for current machine intelligences.
A similar approach has been previously presented in [15].
Shibuya et al. presented a segmentation method, called CD-
matting, which can extract an object in complicated real-
world visual situations using a simple scribble input. They
showed the effectiveness of a user guided object selection

by extending an existing matting technique to deal with
color and range data. While their methods performs well
for cluttered scenes without occlusions, it remains unclear if
a robot can manipulate the extracted objects.

III. M OBILE MANIPULATION

The intrinsic nature of mobile manipulation is that it
combines a large number of sub-tasks, many of them active
research areas in their own right now. Consider the simple
manipulation task of grasping an object and placing it at
a different location. An autonomous solution for this task
implies the ability to find the object, infer grasp points
taking into account the arm and hand kinematics, plan a
path to the grasp position, and control the arms. Mobile
manipulation additionally implicates the ability to localize,
plan a path for the base, and navigate. Robots are now
capable of carrying out many of those functions with a
varying degree of robustness.

In our definition, shared automation refers to the full
or partial replacement of a function that has to be carried
out by the robot. We classify this approach as robot-centric
[16] because it takes existing robotics algorithms as a basis
to solve most of the task and, at limited times, a person
functions as a peer to help the robot complete a task. In
other words, the human is treated as a limited source of
information or processing capability, similar to the automated
system components. The partial replacement of single func-
tions implies that the level of automation is not all or none,
but varies on scale. For example, Sheridan and Verplank
[12] suggested a 10-point scale on which a human operated
function receives the lowest score and an entirely automated
function receives the highest score.

For any given task, different system functions can and
should be automated to differing degrees. For example,
robot navigation in indoor environments has been shown
tremendous advances in the past decades and is now at a
point where robots, when equipped with the right sensors,
can robustly operate in large environments over a long period
of time. However, the ability to recognize a target object,
segment it from the background and compute the desired
grasp are at this point very complex tasks with no principal
solutions available. Given the mobile manipulation task and
the technical capabilities of a system, the question is: which
functions should be automated and to what extent? Parasur-
aman et al. [17] proposed a model for types and levels of
automation that provides a framework and an objective basis
for making such choices. They propose four function classes:
(1) information acquisition, (2) information analysis, (3)
decision and action selection, and (4) action implementation.
We adopt Parasuraman’s classification and cast the mobile
manipulation task into this framework. While Parasuraman’s
approach is human centric, aiming at introducing automation
to replace functions that were previously carried out (par-
tially or fully) by a human operator, our approach aims to
supplement the robot whenever its capabilities are inadequate
or ill-suited for the function.



Fig. 2. Sheridan’s four-stage model of human information processing applied to the mobile manipulation task of retrieving an object from a table. The
object selectioncould be supplemented by a human peer creating a shared autonomy perception system.

The category ofinformation acquisition refers to every
function that is related to sensing and registration of sensed
data. This includes the acquisition of raw sensed data, such
as distance measurements, photographs, tactile events, etc.,
as well as providing information about the state of the robot
and its environment, such as a map or object models. For
a mobile manipulation task, this category can typically be
automated efficiently and robustly.

Information analysis involves cognitive functions such as
object recognition and inferential processes. For autonomous
agents, one main challenge is to detect instances of objects
in sensed data and recognize or categorize them. This is
particularly difficult for applications in cluttered environ-
ments where sensor data can be incomplete and noisy due to
occlusions and outliers. A mobile manipulation robot needs
to infer its own state (localization) as well as the state of
the environment (mapping) and objects it wants to grasp
(object detection and tracking). Automatic localization and
mapping (or SLAM) for static environments is considered a
solved problem, as far as basic research is concerned [18].
General solutions to reliable multi-class object detection,
registration, and tracking remain unsolved, although progress
has been made on restricted versions. For example, reliable
interpretation of images is still a largely unsolved research
problem [19]. Humans, however, are excellent at this task.
We can look at a camera image and identify an object
in a split second. This makes the object identification and
selection task well suited for a shared autonomy application.

Decision and action selectioninvolves selection from
among decision alternatives. For the mobile manipulation
task this category involves decisions on the navigation part
(”where should I go?”) and on the grasping part (”how should
I grasp the object?”). Robots, like the PR2, are capable of
navigating a complicated, cluttered environment, but a person
needs to tell it where to go. With a labeled map, a person
can select a location from a set of options.

The fourth category is calledaction implementation and
it refers to the actual execution of an action or a decision.
This stage involves different levels of machine execution
ranging from low level controllers to the physical actuation
of the robot’s mechanical and electrical components. This

category is most commonly accomplished by robots them-
selves since this is what they were typically built for in the
first place: to take over physical activities. Specifically,in
industrial settings, the action implementation dominatesthe
capabilities of robotic systems. Interestingly, in most mobile
robotic applications the majority of robot operation time is
spent in this category.

IV. PERCEPTUAL SHARED AUTONOMY

Based on the previous analysis, we choose theinformation
analysisas the most promising starting point for a shared
autonomy concept. The operator’s task will be to supplement
the information analysis, namely the object selection, for
the robot. All other components will be handled by the
robot itself. In this paper, we regard an operator as a
remotely located, valuable information source which needs
to be managed carefully. In other words, we seek to use
the person as little as possible. In Sheridan’s terms, letting
human operators contribute perceptual analysis can be seen
as choosing a low automation level for class (2) while other
classes are fully automated.

The considered mobile manipulation task is to pick up an
object and place it at a different location. Once the robot
is positioned closely to the location of the desired object,
a picture is sent to the human peer and he/she is asked
to select the object. In our system, we use an interactive
object selection method which permits the user to effectively
select objects based on color images and point clouds.
This is accomplished by drawing a rectangle around it and
performing simple strokes to mark object and background
areas. Once the user has finished the selection task, control
is handed back to the robot. Based on the selected image
region, the interactive object selection method automatically
finds corresponding 3D points and matches those points to
an object model. The model includes pre-computed grasps
[5] which are used to plan the grasp arm motion. The grasp
is then automatically executed by the robot.

V. I NTERACTIVE OBJECT SELECTION

The interactive segmentation algorithms using graph-cuts
[20], [21], [22] have been proven to be powerful tools for



accurate segmentation of objects from background. Those
methods always segment the image into two regions: fore-
ground and background. For robotic applications those meth-
ods have been widely disregarded since they cannot be
automated. The user must supply the critical parameters to
the algorithm like a rectangle around the object in the scene
[22] or seed points from the desired foreground and the back-
ground [20], [21]. Typically, graph-cut algorithms work on
the basis of pixel intensity or color distributions. Therefore,
a major problem is: if some part of the foreground object
has a color distribution similar to the image background,
that part will also be assiged to the background. Through
more user input, such as more strockes distinguishing fore-
and background, the algorthim can typically recover from
those cases. In this section, we briefly discuss the original
graph-cut algorithm and present our generalization to the
segmentation of sensor data from color and range images.

A. Graph-cuts for image segmentation

Boykov et al. [20] described the image segmentation prob-
lem as a directional flow graphG = {V , E}. The node setV
is defined by the image pixels as well as two nodes called
terminal nodes which represent the two classes ”object” and
”background.” The directed weighted edgesE connect pixel
nodes in a local neighborhood and all pixel nodes to both
terminal nodes. A segmentation is performed by finding the
minimum cut of this graph, which is a subset of edges
that divide the graph into two parts: the object- and the
background-part, hence resulting in a binary segmentation.
The cost of a cut being the sum of the cost of its edges.
This method is semi-automatic as the user needs to select
two sets of image pixelsVo andVb, containing some pixels
of the object and the background respectively.

Consider an imageI = (z1, . . . , zN ) as a vector of pixels,
wherezi are the intensity gray values. Let the setN8 be all
pixel pairs{zi, zj} of all 8-neighborhoods. The segmentation
is expressed as a vector of label valuesα = (α1, ..., αN ) at
each pixel, whereαi ∈ {”object”, ”background”}.

The graph-cut image segmentation algorithm [20] defines
a cost functionE such that its minimum corresponds to a
”good” segmentation. A good segmentation is guided both by
the observed foreground and background color distributions
and a smooth segmentation. This is captured by a Gibbs
energy of the form:

E (α) =
∑

zi∈I

R (zi) + γ
∑

{zi,zj}∈N8

B (zi, zj) . (1)

The termR(.), commonly referred to as the regional term,
expresses how the pixelzi fits into given models of the
object and background. AllVo seeds are connected to the
object node and all background seedsVb are connected to
the backgroud node. Those links form the regional term
and the cost is based on how the intensityzi fit into
given intensity models (e.g., histograms) of the object and
background. The termB(.), known as the boundary term,
reflects the similarity of the voxelszi andzj. Typically, the
edge weight between neighboring pixels is choosen to be

Color Image Range Image
Color 

graph-cut segmentation

Color + range 

graph-cut segmentation

Fig. 3. Interactive object selection using graph-cut segmentation. An initial
segmentation is performed by drawing a rectangle around thedesired object
(green) and in difficult cases, additional strokes for foreground (red) and
background (blue). The initial segmentation is then automatically refined
using graph-cuts on the color and range constraints. The results of this
segmentation are shown in the fourth column. In comparison segmentation
results using color constraints alone are presented in the third column. The
first two images are courtesy of the Middlebury Stereo Dataset [23].

B (zi, zj) ∝ exp(−β|zi − zj |). This weight function forces
the segmentation boundaries at places with high intensity
gradient.

The graph is now fully defined and a segmentation can
be estimated as the global minimum:α̂ = argmin E (α).
Thus, the minimum cut, is the cut with the minimum cost
and can be computed in polynomial time using the max-fow
algorithm [20].

B. Graph-cuts for color and range image segmentation

In contrast to classical image processing applications, we
have different types of information available for robotic
tasks, such as color images from a camera and range images
from a laser range finder or stereo-vision. In our segmenta-
tion method, we seek to combine data from multiple sources
and gather that information in order to achieve a better
segmentation. This will be more efficient and potentially
more accurate than if they were achieved by means of a
single source. Specifically, combining both color and range
constraints provides tighter constraints on the system than
either color or range constraints used separately.

Assuming the color data is registered with the range data,
the pixels zi = {ci, di} are now taken to consist of a
vector of RGB values and a depth value. The regional term
R(.) and the boundary termB(.) are defined separately for
color and depth. Similar to [22], we use Gaussian mixture
models (GMMs)θ to express the color distributions for the
background and foreground as a mixture ofK Gaussian
distributions. In order to deal with the GMM tractably an
additional vectork = (k1, . . . , kN ) is introduced, with



kn ∈ {1, . . .K}, assigning, to each pixel, a unique GMM
component. The resulting regional term for the color com-
ponents is:

Rc (ci) = − log p (ci|αi, ki, θi)− log π (αi, ki) . (2)

Here,p(.) is a Gaussian probability distribution, andπ(.) are
mixture weighting coefficients. The means and covariances
of the Gaussian components for the background and fore-
ground distributions are formed from the respective GMM
components. The regional term for the range information is
simply the fit ofdi to a histogram:

Rd (di) = − log hist(di, αi) . (3)

The resulting combined regional term for a pixelzi is
formulated in a similar fashion to a L2 norm:

R (zi) =

√

Rc (ci)
2
+Rd (di)

2
. (4)

In a similar manner, we formulate the joint boundary term
B(.). For the color components the boundary term [22] is
given as follows

Bc (ci, cj) = δ (αi, αj) exp
(

−βc ‖ci − cj‖
2

)

(5)

with

δ (ci, cj) =

{

1 if αi 6= αi

0 otherwise.
(6)

Hereβc is a constant chosen to be proportional to the contrast
of a selected image region. For the range components, the
boundary term is basically unchanged from the color case:

Bd (di, dj) = δ (αi, αj) exp (−βd |di − dj |) (7)

Again, both terms are combined to form the joint boundary
term:

B (zi, zj) =

√

Bc (ci)
2
+Bd (di)

2
. (8)

The minimum cut optimization for the new graph can be
performed exactly the same way as in the original algorithm
[20]. See Fig. 3 for an example of interactive graph-cut
segmentation using color images compared to our approach
using color or range constraints.

VI. EXPERIMENTS

A. Hardware Setup

The robot platform used for the experiments in this paper
is the PR2 personal robot [24], a two-armed robot with
an omnidirectional base. Equipped with two 7 degrees of
freedom compliant arms, the PR2 is designed for compliant
interaction with the environment. The PR2’s head is a pan-
tilt platform equipped with a high resolution 5 megapixel
camera and two stereo camera pairs with different parameters
for narrow and wide field of view receptively. A strong
texture projector supplements the stereo system to reduce
dropouts on objects with little or no texture. The narrow
field stereo sensor is used in this work to generate a 3D point
cloud of the scene since it provides dense and accurate depth

Fig. 4. The objects used for the mobile manipulation experiments are
typical household items: red glass (1), coffee cup (2), saucer (3), white
bowl (4), wine glass (5), soup can (6), wood bowl (7), coffee creamer (8).

(a) Scene 1. (b) Scene 2.

Fig. 5. Two scenes used for the comparison of object selection approaches.

information for objects close to the robot. The 3D point cloud
is then projected into the high resolution camera to form a
virtual range image which is aligned with the color image
through calibration. The software controlling the PR2, called
ROS [25], encompasses many of the components needed for
mobile manipulation: hardware drivers, controllers, percep-
tion algorithms, motion planning, high-level planning, etc.

B. Comparison of object selection approaches

In the first experiment, we are concerned with comparing
the performance of our shared autonomy object selection
approach with two state of the art automatic object selection
algorithms. The task was to select a desired object, pick up
the object and place it at a different location in front of the
robot. The objects used in our experiments are depicted in
Fig. 4. The input data for algorithms consists of the desired
object class, a range image, and a color image. The different
object selection approaches were tested on the PR2 personal
robot [24].

The first algorithm is the ROS tabletop object detection1.
The tabletop detection first estimates the table by finding
the dominant plane in the point cloud using RANSAC, then
clusters all points above the table to identify individual
objects, and finally applies a simple iterative fitting technique
to match the clusters to a model of the desired object in a
database. If a good fit is found, pre-calculated grasp points

1http://www.ros.org/wiki/tabletop_object_detector
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Fig. 6. Success rates for different object selection approaches. The top
figure shows the success rates over all tested objects while the bottom figure
presents success rates over all tested scenes.

are used to grasp the object. Note that this approach detects
objects purely based on point clouds. The second automatic
algorithm is the well known Haar feature-based cascade
classifier by Viola and Jones [26]. This vision based classifier
was trained with a few positive sample views of each object
as well as a number of negative samples. After training, a
search window is moved across incoming images and the
classifier is applied at every location at different scales.If
a region is likely to show the object the classifier returns
the corresponding bounding rectangle. For automatic object
selection, the stereo point cloud is projected into the camera
image and the same iterative fitting technique used for the
tabletop detection is applied to all points that fall into the
bounding rectangle returned by the classifier. Recall that our
interactive selection approach also uses the projected stereo
points for model based fitting. For the evaluation of the three
object selection approaches, we used a number of different
scenes which contained all test objects and a variable number
of other objects. Two of those scenes are depicted in Fig. 5.

Fig. 6 shows the success rates over all tested objects. It
shows the fraction of times the PR2 arm was able to phys-
ically pick up the object. On average, our shared autonomy
approach was able to pick up the objects 96% of the time

whereas the ROS tabletop object detection and the Haar
detection only average on 44% and 46% respectively. For
a human, the object identification and selection task based
on the robot’s camera images is trivial, and this part was
successful at all times. The only failures in the human as-
sisted approach we observed were related to the model fitting
procedure which failed to find the correct fit. The failure
cases in the point cloud based tabletop object detection were
mostly in the clustering stage which merged points of two
or more objects into one cluster. This problem is amplified
in scenes where objects are arranged in a close proximity
(Scene 2). The Haar detection failures were mostly related to
a wrong classification. Specifically, partially occluded objects
posed great challenges for this vision based approach. This
is not surprising, since partial occlusions were not included
in the training set for the Haar detector. A different view on
the data is provided in second graph of Fig. 6 which shows
the success rates over different test scenes.

In addition to reporting success rates, we also report the
time a person or the computer spent on the object selection
task. On average, the tabletop detection took 5.43 seconds
and the Haar detection only 0.13 seconds. An untrained
person completed the interactive object selection in 17.57
seconds which is more than 100 times longer than the Haar
detection.

An interesting observation is that certain test objects
worked better with certain object selection methods. For
example, the Haar detector confused the white coffee cup
(2) with the white bowl (4) on many occasions since they
look alike very much in camera images. In contrast, the same
classification mistake occurred almost never with the tabletop
object detection approach because in 3D those objects can be
clearly distinguished just by their size and shape. In return,
the tabletop object detection had significant problems with
translucent objects, such as the wine glass (5), where only
very few 3D points are reconstructed by the stereo vision
system. The shared autonomy approach can handle both
cases since: 1) a person can easily separate the object classes
even in very difficult situation such as large occlusion or dim
light conditions and 2) selecting translucent objects works in
the same manner as opaque objects and only very few points
are necessary for the automatic model fitting procedure to
ground the object in space.

C. Challenging object selection situations

In the second experiment, we use our shared autonomy
object selection approach to accomplish tasks which would
be very challenging for current automatic methods. The tasks
included grasping an object which is inside another object,
picking a straw out of a soda can, and retrieving an object
from a box with many other objects. See Fig. 7 for the
described scenarios. Those tasks are challenging for object
selection algorithms in many ways: stacked or combined
objects are typically not modeled in automatic algorithms,
most perception systems are ill-suited to reconstruct straws,
and cluttered environments with largely occluded objects



Fig. 7. Examples for interactive object selection in challenging situations.

are extremely challenging for automatic object detection
algorithms.

In many instances, the interactive object selection was
able to select and pick up the mentioned objects. Perceiving
very small and thin objects (straws) is a difficult problem
for our stereo vision system since the stereo algorithm was
tuned to reconstruct rather smooth surfaces instead of thin
and small objects. The interactive object selection worked
surprisingly well in cluttered environments, even for heavily
occluded objects. Even small parts of occluded objects can
be picked up easily by a human operator and selected with
our interactive object selection method.

VII. SUMMARY AND CONCLUSION

Insufficient robot perception is a major road block for
many real-world robotic applications. In this paper, we
presented method for robotic perception which queries a
person to solve the difficult task of object selection for
the robot. We showed that a human-robot team can work
together effectively solving a typical object manipulation
task. The presented method allows a person to select an
object by drawing rectangles and performing simple strokes
to separate objects from background areas in color images. In
various experiments with the PR2 robot we showed that this
shared autonomy system performs more robustly than state-
of-the-art automatic object selection algorithms, and that it
is capable of tasks which are very challenging to accomplish
by an autonomous agent. For an untrained user, the selection
time for one object is approximately 20 sec. The experiments
show a clear correlation between the success rate of certain
object classes and the tested automatic detection methods.
A future direction could be to apply Value-Of-Information
theory to the object selection task, such as suggested in [27].
This will allow the robot to decide when to query operators,
i.e., humans are only queried if the expected benefit of their
interaction exceeds the cost of obtaining it compared to using
one or many automatic selection approaches.
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