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Abstract— Reliability and availability are major concerns for | Actuators || Planning — Cognition
autonomous systems. A personal robot has to solve complex
tasks, such as loading a dishwasher or folding laundry, whic f
are very difficult to automate robustly. In order for a robot t o .
perform better in those applications, it needs to be capablef | Sensors |—| Perception Perception
accepting help from a human operator.
Shared autonomy is a system model based on human-robot __ . P (R [
dialogue. This work aims at bridging the gap between full
human control and full autonomy for tasks in the domain of User Interface
personal robotics. One of the hardest problems for personal
robotic systems is perception: perceiving and inferring abut
objects in the robot’s environment. We present a system cajide
of solving the perceptual inference in combination with a
human, such that a human operator functions as a resource for
the robot and helps to compensate for limitations of autonom
In this paper, we show how a human-robot team can work

together effectively to solve complex perception tasks. We Fig. 1. The shared autonomy system model for robotic maaiioml. A

present a System.that asl§s a human operator t.o identifylobjets human is included to close the perception loop through lootiative object
it doesn’t recognize or find. In various experiments with the ggjection.

PR2 robot we show that this shared autonomy system performs
more robustly than the robot system alone and that it is capale
of tasks which are difficult to accomplish by an autonomous
agent.

Task

Goal

The user issues the command, "fetch my cup from the
kitchen.” The robot would navigate to the kitchen and query
I. INTRODUCTION the user to select the cup based on a camera image. The robot
o _ ~would then be able to autonomously grasp the cup and carry
Many scientists have pointed out the clear benefits Gf hack to the user. This human-robot team maximizes the
robots and humans working as partners [1], [2], [3]. Th&gengths of the robot (data acquisition, navigation, piag)
research fields of Adjustable Autonomy (AA) and Mixedyng the strengths of the human (cognition, reasoning).
Initiative Control (MIC) aim at bridging the gap betweenlful 1o PR2’s physical capabilities make it well suited for
human control and full autonomy. In many AA and MIC syS-55ks related to mobile manipulation since it has a mobile
tems, the huma.n operator is in charge of the main operat.|%se, two high degree of freedom arms, and large suite of
and autonomy is gradually added to support the executiQnsors. In fact, the hardware is not a anymore limitingfact
of the operator's intent. For example, new telepresenggr many complex robotics tasks. Additionally, the PR2 is a
robots support remote navigation with automatic obstaclgsy high dimensional system that is difficult to remote con-
avoidance [4]. The local autonomy (obstacle avoidance) ¢fo| By combining the PR2’s physical capabilities, the reve
the rpbot decreases the _cognltlve load of the human Operaﬁ}bwing automated functionalities, and a human operater, w
and increases the effectiveness of the system. present a system capable of performing mobile manipulation
In this paper, we will explore how a human-PR2 teamasks more robustly. We demonstrate a robot that exhibits

can work together effectively. Two competing goals neeflyman like intelligence while only requiring a small portio
to be traded off: maximizing the robot's performance whileyt 3 human operator’s attention.

minimizing human input. A teleoperated robot will perform

poorly at complex tasks when the human controls have 1. RELATED WORK

many degrees of freed(_)m or t_here are long communication ptonomous object manipulation has been widely ex-
delays. In such scenarios a high level of autonomy woulgigreqd on recent work. Such approaches perform grasp se-
be preferable. The human may merely function as a limitefd¢tion using shape primitives [5], matching of known objec
resource for the robqt, providing mformaupn that may bﬁ"nodels to sensor data [6], or solely by learning grasp points
used to close a planning, control or pergepuon loop. We W|[yirect|y from 2D images [7]. In general, to complete object-
explore the concept oshared autonomyn the context of gpecific grasping tasks manipulation approaches would need

perception and grasping. Consider the following scenari¢y pe combined with an object detection or segmentation
. , algorithm. There is a large literature on the problem of imag
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from a cluttered scene. A large source for failures in objedty extending an existing matting technique to deal with
manipulation tasks is the lack of robustness of object deolor and range data. While their methods performs well
tection and grasp selection algorithms. Specifically,esyst for cluttered scenes without occlusions, it remains undfea
that rely exclusively on one sensor modality tend are likeln robot can manipulate the extracted objects.

to encounter problems more frequently [10]. In this paper

we do not add another automatic grasping or segmentation I1l. M OBILE MANIPULATION

algorithm. Instead, we present a collaborative systemogrob

human) in order to overcome current limitations of automati  The intrinsic nature of mobile manipulation is that it
approaches. combines a large number of sub-tasks, many of them active

Currently, all robotic systems rely on some combinatiofiesearch areas in their own right now. Consider the simple
of human and machine intelligence. How to best coordinaf@anipulation task of grasping an object and placing it at
these two sources of intelligence has been studied unde@edifferent location. An autonomous solution for this task
variety of terms including human-robot interaction (HRI),jmplies the ability to find the object, infer grasp points
semi-autonomous control, collaborative control, mixdtidn ~ taking into account the arm and hand kinematics, plan a
tive interaction, adjustable autonomy and shared autononfjath to the grasp position, and control the arms. Mobile
In this paper we use the term shared autonomy. manipulation additionally implicates the ability to lotzd,

The general approach of using human intelligence tBlan a path for the base, and navigate. Robots are now
solve "low-level” computational problems has matured iato capable of carrying out many of those functions with a
robust community of human computation markets. Amazon¥arying degree of robustness.

Mechanical Turk is perhaps the best known of several In our definition, shared automation refers to the full
commercial platforms. Surprisingly, the market that comesr partial replacement of a function that has to be carried
closest to meeting the requirements of a real-time robotiegit by the robot. We classify this approach as robot-centric
application is the captcha solving markets which providegl6] because it takes existing robotics algorithms as asbasi
solutions to image recognition problems in real-time (maedi to solve most of the task and, at limited times, a person
response time of 10s) at large scale (1,000,000 images ggnctions as a peer to help the robot complete a task. In
day) and low cost ( $0.002 per image) [11]. For experimentaither words, the human is treated as a limited source of
purposes we used an on-site human operator. However, doformation or processing capability, similar to the autied
approach could be extended to use these human computatiystem components. The partial replacement of single func-
markets. Our platform uses $1 to $2 of electricity per dayions implies that the level of automation is not all or none,
The same amount spent on human computation would bipt varies on scale. For example, Sheridan and Verplank
500 to 1,000 real-time solutions to image recognition task§l2] suggested a 10-point scale on which a human operated

The original and still most common approach to sharetiinction receives the lowest score and an entirely autainate
autonomy in robotics applications is to assign human ogtnction receives the highest score.
erators to supervisory or high level functions and machine For any given task, different system functions can and
intelligence to lower level functions. Sheridan’s widelfed should be automated to differing degrees. For example,
description of "levels of autonomy” [12] implicitly encode robot navigation in indoor environments has been shown
this approach. This division has been successfully apjried tremendous advances in the past decades and is now at a
many applications, especially in exploration and navagati point where robots, when equipped with the right sensors,
tasks [13]. can robustly operate in large environments over a long gerio

Goodfellow et al. [14] integrated user feedback into a robaif time. However, the ability to recognize a target object,
to help with action selection. In this case the robot coflectsegment it from the background and compute the desired
environment information, analyzes the scene for objestss a grasp are at this point very complex tasks with no principal
the human for the appropriate action and then executes ttsmtiutions available. Given the mobile manipulation tasl an
action. In an example task the robot identifies a number olfie technical capabilities of a system, the question ischvhi
bottles and then a human operator selects which bottle tfnctions should be automated and to what extent? Parasur-
robot should pick up. aman et al. [17] proposed a model for types and levels of

Our system relies on human intelligence to solve a seutomation that provides a framework and an objective basis
of low-level perceptual tasks and uses machine intelligendor making such choices. They propose four function classes
for the remaining high and low level functions. This papefl) information acquisition, (2) information analysis,) (3
will detail the advantages of this approach. In brief, outlecision and action selection, and (4) action implemenati
shared autonomy concept allows humans to solve problemé&e adopt Parasuraman’s classification and cast the mobile
which are very difficult for current machine intelligences.manipulation task into this framework. While Parasurarsan’
A similar approach has been previously presented in [15&pproach is human centric, aiming at introducing automatio
Shibuya et al. presented a segmentation method, called C- replace functions that were previously carried out (par-
matting, which can extract an object in complicated realtally or fully) by a human operator, our approach aims to
world visual situations using a simple scribble input. Theyupplement the robot whenever its capabilities are inaatequ
showed the effectiveness of a user guided object selection ill-suited for the function.



Information Acquisition

Information Analysis

Decision Selection

Action Implementation

e Data acquisiton
e Sensor placement
e Active vision

e Object selection
e Obstacle recognition
e Grasp point inference

e Arm planning
e Base planning
e Inverse kinematics

e Low-level control of

gripper, arm, and base
e Actuation

Fig. 2. Sheridan’s four-stage model of human informatioacpssing applied to the mobile manipulation task of reimg\an object from a table. The
object selectiorcould be supplemented by a human peer creating a sharedautgrerception system.

The category ofnformation acquisition refers to every category is most commonly accomplished by robots them-
function that is related to sensing and registration of egdns selves since this is what they were typically built for in the
data. This includes the acquisition of raw sensed data, sufitst place: to take over physical activities. Specificalty,
as distance measurements, photographs, tactile eveats, ehdustrial settings, the action implementation dominakes
as well as providing information about the state of the robatapabilities of robotic systems. Interestingly, in mosthife
and its environment, such as a map or object models. Foobotic applications the majority of robot operation tinge i
a mobile manipulation task, this category can typically bepent in this category.
automated efficiently and robustly.

Information analysis involves cognitive functions such as
object recognition and inferential processes. For autanem  Based on the previous analysis, we choosérif@mation
agents, one main challenge is to detect instances of objeatsalysisas the most promising starting point for a shared
in sensed data and recognize or categorize them. This datonomy concept. The operator’s task will be to supplement
particularly difficult for applications in cluttered enwin- the information analysis, namely the object selection, for
ments where sensor data can be incomplete and noisy dudtie robot. All other components will be handled by the
occlusions and outliers. A mobile manipulation robot needsbot itself. In this paper, we regard an operator as a
to infer its own state (localization) as well as the state ofemotely located, valuable information source which needs
the environment (mapping) and objects it wants to grasfp be managed carefully. In other words, we seek to use
(object detection and tracking). Automatic localizatiomda the person as little as possible. In Sheridan’s termsntgtti
mapping (or SLAM) for static environments is considered &duman operators contribute perceptual analysis can be seen
solved problem, as far as basic research is concerned [18f choosing a low automation level for class (2) while other
General solutions to reliable multi-class object detettio classes are fully automated.
registration, and tracking remain unsolved, although psg The considered mobile manipulation task is to pick up an
has been made on restricted versions. For example, relialdiject and place it at a different location. Once the robot
interpretation of images is still a largely unsolved reskar is positioned closely to the location of the desired object,
problem [19]. Humans, however, are excellent at this task picture is sent to the human peer and he/she is asked
We can look at a camera image and identify an objet¢b select the object. In our system, we use an interactive
in a split second. This makes the object identification andbject selection method which permits the user to effelstive
selection task well suited for a shared autonomy applinatioselect objects based on color images and point clouds.

Decision and action selectioninvolves selection from This is accomplished by drawing a rectangle around it and
among decision alternatives. For the mobile manipulatioperforming simple strokes to mark object and background
task this category involves decisions on the navigation paareas. Once the user has finished the selection task, control
("where should | go?”) and on the grasping part ("how shoulés handed back to the robot. Based on the selected image
| grasp the object?”). Robots, like the PR2, are capable oégion, the interactive object selection method autoralyic
navigating a complicated, cluttered environment, but a@er finds corresponding 3D points and matches those points to
needs to tell it where to go. With a labeled map, a persoan object model. The model includes pre-computed grasps
can select a location from a set of options. [5] which are used to plan the grasp arm motion. The grasp

The fourth category is calledction implementationand is then automatically executed by the robot.
it refers to the actual execution of an action or a decision.
This stage involves different levels of machine execution
ranging from low level controllers to the physical actuatio  The interactive segmentation algorithms using graph-cuts
of the robot's mechanical and electrical components. Th{R0], [21], [22] have been proven to be powerful tools for

IV. PERCEPTUAL SHARED AUTONOMY

V. INTERACTIVE OBJECTSELECTION



Color Color + range

accurate segmentation of objects from background. Those colorimage Range Image graph-cut segmentation | graph-cut segmentation
methods always segment the image into two regions: forg - -
&

the algorithm like a rectangle around the object in the sce
[22] or seed points from the desired foreground and the bacle
ground [20], [21]. Typically, graph-cut algorithms work on
the basis of pixel intensity or color distributions. Thene, )
a major problem is: if some part of the foreground objec

has a color distribution similar to the image background
that part will also be assiged to the background. Throug
more user input, such as more strockes distinguishing for
and background, the algorthim can typically recover fro
those cases. In this section, we briefly discuss the origin
graph-cut algorithm and present our generalization to th
segmentation of sensor data from color and range images.

ground and background. For robotic applications those met}:
ods have been widely disregarded since they cannot Ig
automated. The user must supply the critical parameters &
?f’b )

A. Graph-cuts for image segmentation

Boykov et al. [20] described the image segmentation prolyg 3. interactive object selection using graph-cut segaten. An initial
lem as a directional flow grapfi = {V,£}. The node seV  segmentation is performed by drawing a rectangle aroundehized object
is defined by the image pixels as well as two nodes Ca"e('green) and in difficult cases, additional strokes for fooegd (red) and

. . bt e ckground (blue). The initial segmentation is then autaally refined
terminal nodes which represent the two classes "object” anding graph-cuts on the color and range constraints. Theitsesf this
"background.” The directed weighted edgeésonnect pixel segmentation are shown in the fourth column. In compariggmentation
nodes in a local neighborhood and all pixel nodes to bo sults using color constraints alone are presented irhihg ¢column. The

. . . - irst two images are courtesy of the Middlebury Stereo Datgx3.
terminal nodes. A segmentation is performed by finding the

minimum cut of this graph, which is a subset of edges

that divide the graph into twc_) pa}rts: the object- and t_h% (21, 2;) o exp(—B|z — z;]). This weight function forces
background-part, hence resulting in a binary segmentatiofe segmentation boundaries at places with high intensity
The cost of a cut being the sum of the cost of its edge@radient.

This method is semi-automatic as the user needs to select—rhe graph is now fully defined and a segmentation can
two sets _of image pixel¥, andV,, containi_ng some pixels pe estimated as the global minimum@: = argmin E (a).
of the object and the background respectively. Thus, the minimum cut, is the cut with the minimum cost

Consider an imagé = (21, ..., 2v) as a vector of pixels, anq can be computed in polynomial time using the max-fow
wherez; are the intensity gray values. Let the $é¢ be alll algorithm [20].

pixel pairs{z;, z; } of all 8-neighborhoods. The segmentation

is expressed as a vector of label values- (o, ...,ay) at  B. Graph-cuts for color and range image segmentation

each pixel, wherey; € {"object”,”background” }. In contrast to classical image processing applications, we
The graph-cut image segmentation algorithm [20] definesave different types of information available for robotic

a cost functionE such that its minimum corresponds to atasks, such as color images from a camera and range images

"good” segmentation. A good segmentation is guided both byom a laser range finder or stereo-vision. In our segmenta-

the observed foreground and background color distribstionion method, we seek to combine data from multiple sources

and a smooth segmentation. This is captured by a Gibbgid gather that information in order to achieve a better

energy of the form: segmentation. This will be more efficient and potentially
- _ o more accurate than if they were achieved by means of a
E(a) = ZG:IR(ZJ +7{ Z}: \ B (2, 2) - (1) single source. Specifically, combining both color and range
Z; Zi, 25 ;€N

constraints provides tighter constraints on the system tha
The termR(.), commonly referred to as the regional termgeither color or range constraints used separately.
expresses how the pixel; fits into given models of the  Assuming the color data is registered with the range data,
object and background. AV, seeds are connected to thethe pixelsz; = {e¢;,d;} are now taken to consist of a
object node and all background seédsare connected to vector of RGB values and a depth value. The regional term
the backgroud node. Those links form the regional tern®(.) and the boundary termB(.) are defined separately for
and the cost is based on how the intensity fit into color and depth. Similar to [22], we use Gaussian mixture
given intensity models (e.g., histograms) of the object anchodels (GMMs)d to express the color distributions for the
background. The ternB(.), known as the boundary term, background and foreground as a mixture Bf Gaussian
reflects the similarity of the voxels; and z;. Typically, the distributions. In order to deal with the GMM tractably an
edge weight between neighboring pixels is choosen to lzlditional vectork = (ki,...,ky) is introduced, with



k, € {1,... K}, assigning, to each pixel, a unigue GMM
component. The resulting regional term for the color com:
ponents is:

R: (¢;) = —logp (ci|ov, ki, 0;) —logm (o, ki) - 2

Here,p(.) is a Gaussian probability distribution, and.) are
mixture weighting coefficients. The means and covariance: (
of the Gaussian components for the background and fore
ground distributions are formed from the respective GMM
components. The regional term for the range information is
simply the fit ofd; to a histogram:

Ry (d;) = —log hist(d;, o) . ©)

The resulting combined regional term for a pixe] is
formulated in a similar fashion to a L2 norm:

R(2) = \/Re (1)’ + Ra(d:) .

In a similar manner, we formulate the joint boundary term
B(.). For the color components the boundary term [22] is
given as follows

Be (ci,ej) = 6 (ai, o) exp (—ﬂc lei — Cj||2) )
with

Fig. 4. The objects used for the mobile manipulation expents are
typical household items: red glass (1), coffee cup (2), say8), white
bowl (4), wine glass (5), soup can (6), wood bowl (7), coffeeamer (8).

5 (c' c‘) _ L if a; # 6) (a) Scene 1. (b) Scene 2.
vy “~7) T .
0 otherwise. Fig. 5. Two scenes used for the comparison of object seteejiproaches.

Heref, is a constant chosen to be proportional to the contrast
of a selected image region. For the range components, t . . .
boundary term is gasicglly unchanged frgm the (F:)olor Case!t.;1 ormatlon_for obj_ects close_to the robqt. The 3D point dou
is then projected into the high resolution camera to form a
By (di,d;) = 0 (e, o) exp (—fq |di — d;]) (7) virtual range image which is aligned with the color image
through calibration. The software controlling the PR2|ezhl
kRos [25], encompasses many of the components needed for

mobile manipulation: hardware drivers, controllers, pgrc
B(zi,2;) = \/Bc (¢i)? + Ba(d;)? . 8) tion algorithms, motion planning, high-level planningg.et

Again, both terms are combined to form the joint boundar
term:

The minimum cut optimization for the new graph can bd. Comparison of object selection approaches
performed e_xactly the same way as in _the original algorithm |, the first experiment, we are concerned with comparing
[20]. See Fig. 3 for an example of interactive graph-Cufhe performance of our shared autonomy object selection
segmentation using color images compared to our approaghsroach with two state of the art automatic object selactio
using color or range constraints. algorithms. The task was to select a desired object, pick up
VI. EXPERIMENTS the object ano! place it at.a different chation in front _of thg
robot. The objects used in our experiments are depicted in
A. Hardware Setup Fig. 4. The input data for algorithms consists of the desired
The robot platform used for the experiments in this papesbject class, a range image, and a color image. The different
is the PR2 personal robot [24], a two-armed robot witlbbject selection approaches were tested on the PR2 personal
an omnidirectional base. Equipped with two 7 degrees @bbot [24].
freedom compliant arms, the PR2 is designed for compliant The first algorithm is the ROS tabletop object detection
interaction with the environment. The PR2's head is & parfhe tabletop detection first estimates the table by finding
tilt platform equipped with a high resolution 5 megapixekhe dominant plane in the point cloud using RANSAC, then
camera and two stereo camera pairs with different parametefusters all points above the table to identify individual
for narrow and wide field of view receptively. A strong objects, and finally applies a simple iterative fitting teiclue
texture projector supplements the stereo system to redugematch the clusters to a model of the desired object in a

dropouts on objects with little or no texture. The narrowjatabase. If a good fit is found, pre-calculated grasp points
field stereo sensor is used in this work to generate a 3D point

cloud of the scene since it provides dense and accurate deptkht t p: / / www. r os. or g/ wi ki / t abl et op_obj ect _det ect or



Success rate of object selection approaches for different objects whereas the ROS tabletop object detection and the Haar
detection only average on 44% and 46% respectively. For
a human, the object identification and selection task based
on the robot's camera images is trivial, and this part was
successful at all times. The only failures in the human as-
sisted approach we observed were related to the model fitting
procedure which failed to find the correct fit. The failure

cases in the point cloud based tabletop object detectioa wer
mostly in the clustering stage which merged points of two

or more objects into one cluster. This problem is amplified

I eveop in scenes where objects are arranged in a close proximity
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tor Egzh_cm (Scene 2). The Haar detection failures were mostly related t
0 L e —— a wrong classification. Specifically, partially occludedeults
posed great challenges for this vision based approach. This
Success rate of object selection approaches for different scenes is not surprising, since partial occlusions were not inetlid

100

in the training set for the Haar detector. A different view on
the data is provided in second graph of Fig. 6 which shows
the success rates over different test scenes.

In addition to reporting success rates, we also report the
time a person or the computer spent on the object selection
task. On average, the tabletop detection took 5.43 seconds
and the Haar detection only 0.13 seconds. An untrained
person completed the interactive object selection in 17.57
seconds which is more than 100 times longer than the Haar
B cveon | detection.

[ Jhaar An interesting observation is that certain test objects
) s I i et worked better with certain object selection methods. For
example, the Haar detector confused the white coffee cup
(2) with the white bowl (4) on many occasions since they
Fig. 6. Success rates for different object selection amfrem The top ook alike very much in camera images. In contrast, the same
g?é‘srgnstzog’ﬁégi Success rates over all tested objects \wkiledttom figure classification mistake occurred almost never with the taple
object detection approach because in 3D those objects can be
clearly distinguished just by their size and shape. In retur

. ) the tabletop object detection had significant problems with
are used to grasp the object. Note that this approach detefﬁ?nslucent objects, such as the wine glass (5), where only

objects purely based on point clouds. The second automaigry few 3D points are reconstructed by the stereo vision
algorithm is the well known Haar feature-based cascads%,stem_ The shared autonomy approach can handle both
classifier by Viola and Jones [26]. This vision based classifi ;5565 since: 1) a person can easily separate the objeesclass
was trained with a few positive sample views of each objeclen in very difficult situation such as large occlusion ondi

as well as a number of negative samples. After training, gyt conditions and 2) selecting translucent objects work
search window is moved across incoming images and thge same manner as opaque objects and only very few points

classifier is applied at every location at different scalés. 5. necessary for the automatic model fitting procedure to
a region is likely to show the object the classifier retumﬁround the object in space.

the corresponding bounding rectangle. For automatic bbjec
selection, the stereo point cloud is projected into the came . . ) L
image and the same iterative fitting technique used for th%‘ Challenging object selection situations
tabletop detection is applled to all points that fall inte th In the second experiment, we use our shared autonomy
bounding rectangle returned by the classifier. Recall that ogpject selection approach to accomplish tasks which would
interactive selection approach also uses the projecteeoste pe very challenging for current automatic methods. Thestask
points for model based fitting. For the evaluation of theehrejncluded grasping an object which is inside another object,
object selection approaches, we used a number of differgfitking a straw out of a soda can, and retrieving an object
scenes which contained all test objects and a variable numlgom a box with many other objects. See Fig. 7 for the
of other objects. Two of those scenes are depicted in Fig. fescribed scenarios. Those tasks are challenging for tobjec
Fig. 6 shows the success rates over all tested objects.sklection algorithms in many ways: stacked or combined
shows the fraction of times the PR2 arm was able to physbjects are typically not modeled in automatic algorithms,
ically pick up the object. On average, our shared autonomyost perception systems are ill-suited to reconstructstra
approach was able to pick up the objects 96% of the timand cluttered environments with largely occluded objects
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(4]
(5]

(6]

(7]

(8]

Fig. 7. Examples for interactive object selection in chaieg situations.

[9]
are extremely challenging for automatic object detection

algorithms. [10]
In many instances, the interactive object selection was
able to select and pick up the mentioned objects. Perceiving

very small and thin objects (straws) is a difficult proble

for our stereo vision system since the stereo algorithm was
tuned to reconstruct rather smooth surfaces instead of thin
and small objects. The interactive object selection workeld?
surprisingly well in cluttered environments, even for higav

occluded objects. Even small parts of occluded objects cé#t$]
be picked up easily by a human operator and selected with
our interactive object selection method. [14]

VII. SUMMARY AND CONCLUSION

Insufficient robot perception is a major road block fort®
many real-world robotic applications. In this paper, we
presented method for robotic perception which queries a
person to solve the difficult task of object selection fort®!
the robot. We showed that a human-robot team can work
together effectively solving a typical object manipulatio [17]
task. The presented method allows a person to select an
object by drawing rectangles and performing simple strokgss)
to separate objects from background areas in color images. |
various experiments with the PR2 robot we showed that thig?
shared autonomy system performs more robustly than stafes)
of-the-art automatic object selection algorithms, and tha
is capable of tasks which are very challenging to accompliﬁlé\l]
by an autonomous agent. For an untrained user, the selection
time for one object is approximately 20 sec. The experiments
show a clear correlation between the success rate of cert
object classes and the tested automatic detection methods.
A future direction could be to apply Value-Of-Information (23]
theory to the object selection task, such as suggested Jn [27
This will allow the robot to decide when to query operatorsjp4]
i.e., humans are only queried if the expected benefit of their
interaction exceeds the cost of obtaining it compared togusi (25
one or many automatic selection approaches.

[26]
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