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Abstract— This paper describes a system for automatic
mapping and generation of textured 3D models of indoor
environments without user interaction.

Our data acquisition system is based on a Segway RMP plat-
form which allows us to automatically acquire large amounts
of textured 3D scans in a short amount of time. The first data
processing step is registration and mapping. We propose a
probabilistic, non-rigid registration method that incorporates
statistical sensor models and surface prior distributions to
optimize alignment and the reconstructed surface at the same
time. Second, in order to fuse multiple scans and to recon-
struct a consistent 3D surface representation, we incorporatea
volumetric surface reconstruction method based on a oriented
point. For the final step of texture reconstruction, we presenta
novel method to automatically generate blended textures from
multiple images and multiple scans which are mapped onto
the 3D model for photo-realistic visualization. We conclude our
report with results from a large-scale, real-world experiment.

The most significant contribution of this research is a
functional system that covers all steps required to automatically
reconstruct textured 3D models of large indoor environments.

I. I NTRODUCTION

3D representations of environments are important for a
wide variety of current and future applications: autonomous
navigation of robots, architecture, cultural heritage, crash
and crime site reconstruction, and many more. Emergency
planning, facility management, surveillance and real estate
applications significantly benefit from 3D maps of building
interiors. Creating such models from blueprints is a tedious
task and hard to automate since many buildings do not com-
ply with the blueprints created by their architects. And even
accurate blueprints do not contain furniture or appliances
added after the building construction.

Today, the digital modeling process of such sites is still
primarily done manually. Because working time is expensive,
these models typically lack details that might be vital for
applications such as autonomous robot navigation.

In contrast, a fully automated 3D data acquisition and
model generation involves the following complex compo-
nents:

• automated acquisition of range and image data
• fusion of data from different viewpoints
• integration of range and image data into a a single

consistent model
• simplification and smoothing of the model for visual-

ization and storage

In this paper, we address the first three components and
present a working system for the automatic reconstruction

Fig. 1. The scanning platform is based on a Segway RMP, equipped with
two laser range finders for navigation and 3D scanning respectively, a digital
SLR camera for texture acquisition, and two on-board computers for data
processing.

of textured 3D models.

A. State of the Art and Related Work

The reconstruction of 3D models for robot navigation
gained significant interest in robotics research over the past
years. The progress in this field is mainly based on recent
innovations on statistical techniques for robotic mappingand
localization. Several successful algorithms emerged, among
them CEKF [1], SEIF [2], FastSLAM [3], MLR [4], TJTF
[5], and Stochastic Gradient Descent [6], which are all capa-
ble of generating maps of large scale environments. Nearly
all state of the art methods assume robot operation in a two-
dimensional environment and therefore three parameters (2D
position and heading) are sufficient to describe the robot’s
state. Just recently researchers are extending solutions to full
6 DoF poses [7] and mapping of 3D environments [8].

Many research groups use 2D laser range finders to build
3D map representations. Often, a combination of horizontally



and vertically mounted scanners are used and localization of
the robot and registration of the data is performed in 2D [9],
[10]. The mobile robot Kurt3D [11] is among the first robots
capable of building 3D maps by registering the data in 3D.

While in the robotics community laser range finders are
predominant for accurate mapping tasks, in the computer-
vision domain, researchers have developed powerful algo-
rithms to reconstruct 3D models from photographs. Multi-
view stereo (MVS) [12] is one of the most successful
approaches which produces dense models. Another notable
example is Furukawa et. al [13], who presented a fully
automated 3D reconstruction and visualization system for
architectural scenes based on camera images. Although sig-
nificant progress to improve the robustness of computer-
vision reconstruction approaches was made in the past years,
the approaches yet cannot compete with the accuracy of laser
range finders. Specifically, textureless scenes which are often
found in indoor environments remain very challenging.

Our reconstruction approach is similar to existing ap-
proaches [14], [15]. The RESOLV project [14] aimed at
modeling interiors for virtual reality and tele-presence and
used a RIEGL laser and the well known ICP algorithm [16]
for scan matching. However, their approach was designed to
reconstruct small (single-room sized) environments; operat-
ing on the scale of a full office floor poses a major challenge.
The AVENUE project [15] targeted the automation of the
urban environment modelling process and used a CYRAX
laser scanner and a feature-based scan matching approach
for registration of the 3D scans.

B. Overview

In the following, we present a system that enables the
automatic creation of 3D models of large environments in
a short amount of time. Fig. 2 shows the complete recon-
struction process. The process is divided into the five steps
exploration, data acquisition, global registration, surface
reconstructionand texture reconstruction.

The exploration contains functions that enable the robot
to autonomously navigate and explore the environment. This
includes online 2D mapping for localization and collision
avoidance, planning of view points for data acquisition, and
navigating in between 3D scans.Data acquisitioncomprises
the acquisition of the laser scans from a panning lidar sensor,
which are then merged into 3D scans. The digital still camera
simultaneously acquires images, which are undistorted using
an offline camera calibration and subsequently merged into a
circular panorama. Theglobal registrationstep aligns the 3D
points from the individual scans into a consistent map using
a joint registration and reconstruction algorithm. A unique
surface represented by a triangulated mesh is then generated
using volumetricsurface reconstruction. Finally, textures are
generated from still images and blended over the mesh in the
texture reconstructionstep.

C. The Experimental Scanning Robot

For our experiments we use a Segway RMP robot as
shown in Fig. 1. The RMP can carry loads up to 50 kg

Fig. 2. Overview of the reconstruction and modelling process.

over a range of 15km. For the purpose of high-quality mea-
surements, we equipped the RMP with an additional castor-
wheel and disabled the dynamic stabilization. To collect data
and perform online mapping and exploration, two on-board
Mac Mini computers (2.0GHz Core 2 Duo processor, 1GB
RAM) are mounted under the base plate. The computers use
the open-source Robot Operating System (ROS) [17] which
provides a structured communications layer above the host
operating system (linux in our case).

II. EXPLORATION

A. 2D Mapping and Localization

For navigation, exploration, and localization purposes the
robot builds and maintains a 2D map of its environment.
The main sensor for this system is a horizontally mounted
SICK LMS200 laser range finder (cf. Fig. 1). The laser
readings and wheel odometry are sent to a SLAM module
based on GMapping [18] which constructs a consistent high
resolution 2D grid-based map of the environment suitable
for path planning.

B. View Point Planning

Frontier based exploration [19] is used to provide active
exploration of the robot’s environment. An additional 2D
grid map is maintained to record which parts of the envi-
ronment have been observed. Boundaries between observed
and unobserved regions (frontiers) are used as goal points for
the robot’s navigation system. Upon arriving at a goal point



the robot will perform a full 3D scan of its environment
and update its exploration map. New boundaries and goal
points will then be calculated. This process repeats until no
reachable frontiers remain.

III. D ATA ACQUISITION

A. Sensors

The range measurement component of this scanning sys-
tem consists of a SICK LMS200 laser range finder which
is mounted on a pan-rotation unit such that the plane of the
laser’s sweep is aligned with the vertical axis. The LMS
unit provides accurate measurements up to a range of 30
meters over 180 degrees and with 1/2-degree resolution.
Panning the laser 360 degrees about the vertical axis yields
a spherical range image as shown in Fig. 3. The panning
speed is adjusted to also yield a 1/2-degree scan resolution.

A digital still image camera equipped with a fish-eye
lens is mounted on the same rotation unit opposite of the
laser. This setup allows the system to capture high-resolution
pictures of the scene while panning. Because of the camera’s
wide field-of-view it only needs to take six pictures to cover
the scanned space.

B. System Calibration

In order to fuse data from different scan positions and
texturize the point data obtained from the laser range finder,
the camera’s intrinsic and extrinsic parameters as well as
the laser range finder’s pose have to be determined. The
intrinsic camera parameters were estimated using the method
described in [20] assuming a pin-hole camera model with
three radial and two tangential distortion parameters. The
camera pose relative to the lidar is determined from corre-
spondences of 3D points from the laser range finder with
image pixels from the camera. The correspondences are se-
lected manually from several camera views and a panoramic
range image. The extrinsic parameters are calculated from
the point correspondences by minimizing the reprojection
error [20].

C. Point Cloud Generation

A three-dimensional point cloud is generated by panning
the laser and associating each vertical scan line with its pan
angle. Since the raw scan data is not sampled equidistantly,
it is resampled into an equidistant spherical grid. Each grid
cell contains the distance measurement which is closest to the
center of the cell. Measurements inside a cell are not aver-
aged since this would cause artifacts at depth discontinuities.
Some cells in the depth grid may not contain any valid depth
measurements if an object is out of range or if the laser beam
hits an absorbant surface and never returns. Those cells are
marked invalid in subsequent processing steps.

IV. GLOBAL REGISTRATION

Multiple 3D scans are necessary to digitize large en-
vironments without occlusions. To create a correct and
consistent model, the scans have to be merged into one
common coordinate system. Since the robot does not have

Fig. 3. Panoramic range image (top) and texture image (bottom) with 1/2
degree resolution. Invalid cells are marked red.

a precise, externally referenced position estimate, we have
to address the problem of simultaneous localization and
mapping (SLAM).

We use a novel probabilistic technique for solving the
offlineSLAM problem by jointly solving the data registration
problem and the faithful reconstruction of the underlying
geometry. The key insight of this approach is to incorporatea
generic surface prior which guides the optimization towards
maps that closely resemble the real environment. A more
detailed description of this approach for the 3-DoF case can
be found in [21].

The goal of SLAM is to simultaneously estimate both the
robot’s pose and a map of its environment. In probabilistic
SLAM this is often expressed in a Bayesian filtering formu-
lation [22]. Thrun et al. have shown [23] that a closed form
expression of a posterior over the robot’s pose and the map
can be obtained by recursively applying the Bayes rule and
a subsequent induction:

p (x1:t,m|u1:t, z1:t) = (1)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

k

p
(

zk
t |xt,m

)

]

Here we adapted the common notation where at a timet the
following quantities are defined:xt is a vector describing the
3D position and attitude of the robot,ut denotes a control
vector that was applied at timet − 1, zk

t corresponds to the
kth observation, andm represents the map as a vector of
featurem = {mi}.

In Eq. (1),p (xt|xt−1,ut) is known as themotion model
which describes state transitions of the robot’s pose in
terms of a probability distribution. The state transitionsare
assumed to be a Markov process and independent of both
the observations and the map. The termp

(

zk
t |xt,m

)

on the
other hand denotes anobservation modelwhich models a
observationzk

t from a known pose and a known map as a
probability distribution. Both models have been well studied
for a variety of robots and sensors. We use a probabilistic
motion model where the robot is assumed to perform a series



of a rotation, a translation, and a second rotation [24] withan
extension to the 6-DoF state space. Observations are modeled
as a range measurement along a beam, which originates at
the local coordinate system of the sensor [24].

The two prior termsp (x0) andp (m) characterize priors
about the first robot pose and about the map respectively.
Usually p (x0) is used to anchor the initial pose to a fixed
location. The map priorp (m) is typically assumed to be
unknown and subsumed into the normalizerη [25]. In our
formulation, we want to explicitly use the map prior to
achieve a better estimate of the robot’s pose and the map.

A. Map Prior

The probability distributionp (m) in Eq. (1) represents a
prior distribution of all measured scenes. An exact proba-
bilistic model of this distribution is infeasible and probably
not even well defined. Hence we focus on partial models,
which represent properties of the surface structure. We use
a so calledmanifold prior. This prior is based on the idea

Fig. 4. The manifold prior uses a fixed neighborhoodNε of a point
to create a tangent plane defined by a pointoi and the normalni. The
distribution is then modelled as a Gaussian over the projected distance to
the tangent plane.

that observations belong to continuous surfaces in the robot’s
environment. For a 3D map this means that the most probable
surface must be a compact, connected, two-dimensional
manifold, possibly with boundary, embedded inR

3. The first
step towards defining such a prior is to compute the tangent
plane associated with each observed pointmi. A tangent
plane is defined by a 3D pointoi and normalni. For all
points we choose a local neighborhoodNε of fixed diameter
(typically ε = 10 . . . 20 points). The centeroi is taken to
be the centroid ofNε, and the normalni is determined
using principal component analysis [26]: the eigenvector with
the smallest eigenvalue corresponds to the normalni. The
projected distancedi of the point onto its tangent plane is
defined by the dot product:

di = (mi − oi) · ni . (2)

Now we can define a Gaussian type manifold prior of the
form:

pm (m) = ηm

∏

i

exp

{

− d2
i

2σm

}

, (3)

where σm is the variance of tangent plane distances and
ηm =

∏

i

(

σm

√
2π

)−1

is a normalization factor.
Fig. 4 shows the properties of this prior. The observed

points are drawn to their corresponding tangent planes.

Fig. 5. The top figure shows a manually created floorplan and thetrajectory
taken by our scanning robot. The middle figure presents the 3D pointcloud
registered with our registration algorithm. The enlarged detail of a hallway
demonstrates that using our probabilistic non-rigid method results in a more
accurate registration: The registration error visualization reveals a slight
miss-alignment for the ICP registered dataset, while our non-rigid technique
results in a good alignment over the whole surface.

Hence the most probable arrangement given only this prior
is when all points are located on the same one-dimensional
manifold. The point motion will be constrained due to the
dependence of measurement and pose. In fact, a movement
of a point will create a counter potential for the point and
for the corresponding pose to comply with the measurement
model. In other words, maximizing the posterior probability
Eq. (1) will lead to a set of poses and map features that best
explain the measurements as well as the prior model.

B. Optimization

First we use the position estimates of the navigation
system as an initial estimate forx1:t and the measurement
model to calculate and initial estimate form1:i. Next, we use
a non-linear conjugate gradient variant to find the parameters
which maximize the log-likelihood ofp (x1:t,m|u1:t, z1:t).
The result of this optimization is presented in Fig. 5.



V. GEOMETRY RECONSTRUCTION

In our system, we use an algorithm which does not
make any prior assumptions about connectivity of points.
This volumetric approachfor surface reconstruction is more
efficient in situations where multiple scans are taken of the
same surface as the 3D points are accumulated into voxel
grid structures first.

An important tool for surface reconstruction from unorga-
nized points is the signed distance functionζ : R

3 → R that
measures for each point the signed distance to the surface.
The implicit surfaceS is defined as a zero-set of this scalar
functionS : ζ (x) = 0 with x ∈ R

3. The aim is to construct a
smooth volumetric field functionζ (x), such that the zero-set
approximates the real surface as closely as possible.

The first step of our surface reconstruction approach is to
calculate a 3D indicator functionχ (defined as 1 for points
inside the model, and 0 for points outside). Kazhdan et al.
[27] show that there exists an integral relationship between
points sampled from the real surface and this indicator
function. Specifically, they found that the problem of finding
the indicator function reduces to finding the scalar function
χ whose gradient best approximates a vector fieldV defined
by the scan points, i. e.min ‖∇χ − V‖.

Since the gradient vectors of the binary indicator func-
tion would be unbounded at the surface, we convolveχ

with a smoothing filterF and consider the gradient of the
smoothed function. One can show [27] that the gradient of
the smoothed indicator function is equal to the smoothed
surface normal field:

∇ (χ ⋆ F ) (q) =

∫

S

F (q) NS (p) dp ≈ V (q) (4)

whereq ∈ R
3 and NS (p) is the surface normal atp ∈ S.

The surface normal field can be best approximated by the
oriented scan points. In other words, the oriented point sam-
ples can be viewed as samples of the gradient of the model’s
smoothed indicator function. If we apply the divergence
operator on both sides of Eq. (4), the variational problem
transforms into a standard Poisson problem:

△ (χ ⋆ F ) = ∇ · V (5)

which can be solved efficiently by discretizing the 3D space
into a regular gridG and using this grid as a space of
functions. For each grid cellc, we setFc : R

3 → R to
be the smoothing function for a local patch. We chooseFc

to be abilateral filter [28] centered about the cell’s centroid
oc of the following form:

Fc (q) =
1

wq

∑

i∈G

Gσs
(‖oc − q‖) Gσr

(|nc · ni|)ni (6)

where Gσ (x) denotes a Gaussian kernel,nc is the cell’s
normal vector andwq is a normalization factor:

wq =
∑

i∈G

Gσs
(‖oc − q‖) Gσn

(|nc · ni|) . (7)

The parametersσs andσn will measure the amount of filter-
ing for the normal field. Similar to a Gaussian convolution

Fig. 6. Volumetric surface reconstruction based on orientedpoints.

as proposed by Kazhdan et al. [27], the bilateral filter of
Eq. (6) is a normalized weighted average whereGσs

is a
spatialGaussian that decreases the influence of distant cells,
Gσn

a Gaussian that decreases the influence of cellsi with
a normal vector different fromnc. Unlike the Gaussian filter
our bilateral filter takes the variation of normals into account
in order to preserve sharp features.

Once the vector field is defined for each grid node, the
gradient field of our indicator function defined in Eq. (4) can
be efficiently represented as linear sum of all node functions.
Now, we can solve the indicator functionχ such that the
gradient ofχ is closest toV.

Finally, to extract the iso-surfaceS from the indicator
function, a method similar to theMarching Cubesalgorithm
[29] is used. This method creates vertices at zero-crossings of
χ along edges of the grid nodes. The vertices are connected
to triangles such that a continuous manifold alongS is
formed.

VI. T EXTURE RECONSTRUCTION

In our system, we capture color images from a digital
camera together with the geometry. We use these images
to reconstruct texture maps which are mapped onto the 3D
model to generate a greater realism. Our texture recon-
struction approach consists of the following steps:surface
segmentation, surface unfolding, mesh re-parameterization,
color reconstruction, andcolor blending.

A. Surface Segmentation

The first subproblem for texturing a complex 3D surface
is finding a surface partitioning. We seek to break the surface
into several regions such that the distortion when flattening
each region onto a plane is sufficiently small while the
number of regions remains small at the same time. Since
planes are developable surfaces (with zero Gaussian curva-
ture) by definition, one possible approach is to segment the
surface into nearly planar regions. We employ an incremental
clustering approach with a subsequent merging strategy.
Regions are grown from randomly chosen seeds and adjacent
faces with similar surface normals are iteratively added. A
major problem of this segmentation procedure is the resulting
over-segmentation. In order to reduce the over-segmentation,
we append an optimization procedure to merge segments by
incorporating information about their similarity.



Fig. 7. For the texture reconstruction the mesh issegmentedinto nearly planar regions and each region isunfoldedonto a 2D plane. The texture of
each region isreconstructedfrom all camera images observing this part of the surface and the resulting color composite isblendedafterwards to avoid
discontinuity artifacts.

B. Unfolding

Given a set of disjoint surface regions, we compute a
mapping from each surface point of a region to the texture
domain. A rather simple way for constructing such a parame-
terization of a triangle mesh is based on the fact that the pre-
viously described segmentation procedure results in almost
planar surface segments. We can find the best fitting plane in
a least squares sense by usingprincipal component analysis
(PCA). The result is an orthogonal linear transformationW

that transforms the data pointpi = (xi, yi, zi)
T to a new

coordinate system̃pi = (x̃i, ỹi, z̃i)
T such that the greatest

variance of the data is along the first coordinate and the
smallest variance along the third coordinate. Then a mapping
can be defined by projecting the transformed coordinates
onto the plane spanned by the first and the second coordinate
axis:

ui =

(

x̃i

ỹi

)

=

(

1 0 0
0 1 0

)

p̃i . (8)

Even though this method does not guarantee to result in a
bijective mapping, we can easily check this criterion for each
mapping. In a bijective map, the order of the triangle vertices
(anticlockwise) will be preserved. In practice, the mapping
is always bijective since the segmentation algorithm results
in almost developable regions.

C. Mesh Re-parameterization

After having determined a mapping for each segment,
we re-parameterize the mesh to obtain a densely sampled
surface. For the re-parameterization we use an equidistant
point grid in texture space where each grid point corresponds
to a texture pixel. The space spanned by this grid will become
our texture spaceT .

In order to determine if anỹpi = (ui, vi)
T is inside or

outside of a mapped triangle, we calculate the barycentric
coordinate. The barycentric coordinate of the pointp̃i with
respect to the verticesv1, v2, andv3 of a triangle is a triplet
of values,{b1, b2, b3}, such thatp̃i = b1v1 + b2v2 + b3v3,
with b1 + b2 + b3 = 1. p̃i lies inside the triangle ifb1, b2,
and b3 are positive. In this way, we find the corresponding
triangles for all points of the grid and use the barycentric

coordinate to interpolate the mappingf at the point’s coor-
dinates. Grid points which are not part of the mapped surface
are discarded.

D. Color Reconstruction

Knowing the pose and the intrinsic calibration of our
scanner allows us to project any 3D surface point into
any of the original camera images to retrieve the color
from this particular view. However, every view carries only
information on a part of the reconstructed surface. To find
out if a given 3D point is visible in a certain view, we first
transform the point into the camera coordinate system using
the known view pose. Next, we use the intrinsic camera
calibration to project the point to pixel coordinates. If the
resulting coordinates are valid (i. e. in the range of the image
dimensions) we can conclude that the 3D point is in the
camera’s view frustrum. However, the environment geometry
possibly creates complex occlusions and makes it difficult to
recognize if a 3D point was truly observed by the camera.
To test if the 3D point is occluded in this view we trace
the ray originating at the point to the center of the camera
and determine if it intersects with any surface. This test can
be efficiently performed using the GPU’s occlusion culling.
In many cases, a 3D point is visible from more than one
view and in this case we reconstruct the color from the view
closest to the 3D point.

E. Color Blending

Since the reconstructed texture maps are composites from
multiple camera images, discontinuity artifacts usually be-
come visible. The reason for those artifacts is that the surface
reflectance varies by distance and angle of incident. For a
consistent texturing we want to minimize the visibility of
these discontinuity artifacts. We approach this problem by
using a blending technique, which globally adjusts the color
of all pixels.

Our algorithm extends the ideas of [30] to use a Poisson
formulation for our multi-view blending problem. The pro-
cedure is as follows: for a texture with regions reconstructed
from N camera images, we can treat the regions as separate
functions: f1:N . Now, let Ω1:N be the definition space of



Fig. 8. The texture blending globally optimizes the texture color and
removes discontinuities at boundaries between texture regions reconstructed
from different camera images. The image in the middle shows the recon-
structed texture and the right image the texture after blending.

f1:N , ∂Ωi,j be the boundary betweenΩi and Ωj , and∂Ωi

the texture boundary of theith texture. Finally, we defineV
to be a guidance vector field defined overΩ1:N . See Fig. 8
(left) for an illustration of this notation.

Our goal is to findf ′
1:N which have the same definition

space asf1:N and no visible discontinuities at their bound-
aries. We cast this problem as membrane interpolant that
satisfies:

min
f ′

1:N

∑

i

∫∫

Ωi

|∇f ′
i − V|2 (9)

with the Dirichlet boundary conditionsf ′
i |∂Ωi,j

= f ′
j |∂Ωi,j

andf ′
i |∂Ωi

= fi |∂Ωi
. We set the guidance vector fieldV to

equal the derivatives off1:N , which means we constrain the
derivatives off ′

1:N to be the same as the derivatives off1:N .
The first boundary constraint guarantees a smooth bound-
ary between texture regions while the second constraint is
necessary since the gradient operator is invariant through
multiplicative factors. The solution of Eq. (9) is the unique
solution of the following Poisson equation:

∇ · ∇f1:N = △f1:N = ∇V over Ω1:N (10)

under the same boundary conditions as Eq. (10). In the
discrete texture domain, this can be efficiently solved as a
sparse linear system. See [30] for further details.

VII. R ESULTS

A number of experiments have been conducted using
the previously described approaches. In particular, we have
created a 3D model of Bosch’s office in Palo Alto. Snapshots
of this model are depicted in Fig. 9.

The largest fraction of the time required for the complete
3D reconstruction process was spent on the data acquisition;
6 hours were necessary to scan one office floor by taking
127 scans (approx. 3 min per scan). Registration, surface
and texture reconstruction took on the order of 100 minutes
for the Bosch dataset on a standard desktop computer (3.4
GHz, 4GB RAM). About 70% of this time was spend on
IO operations on the 8GB of compressed raw data. The
registration was performed on a sub-sampled dataset and
took 20 minutes to converge. Projecting the registration
results onto the high-resolution data yielded good results.
Our volumetric surface reconstruction approach found a
highly detailed approximation of the real surface in ap-
proximately 65 minutes. Again, we employed a multi-grid
scheme to speed up the reconstruction. Structures such as
legs of chairs, as well as plants, due to fine leaf and branch

structures, turned out to be problematic. The reconstruction
typically fused multiples of such structures into a single
blob or merged them with a nearby wall. Improvements are
certainly possible by scanning higher resolution, with the
obvious drawback of increased memory requirements and
extended acquisition and processing times. For the final step
of model reconstruction, we found that the automatic texture
reconstruction procedure results in high-quality texturemaps
in only 15 minutes for the Bosch dataset. Some failures led
to a distorted, unrealistic looking texture and were caused
by inaccurately reconstructed geometry.

VIII. C ONCLUSION

Our research has led to a number of interesting results.
We presented an automated system for the creation of large
scale 3D models in a short amount of time with moderate
hardware requirements. The presented paper describes the
required components, specificallydata acquisition, registra-
tion, geometry reconstruction, and texture reconstruction.
The capabilities of our system were demonstrated in several
experiments by capturing large models with up to more than
54 million triangles covering an area of 50 m by 140 m
meter. The resulting quality in terms of geometric and texture
details is remarkable and to the best of our knowledge, our
system is the first to fully automatically reconstruct large
indoor environment models of this quality.

A common restriction made in mapping systems is the
assumption of a static environment. Our system obliges the
same restriction. Although the registration is fairly robust
to artifacts created by a limited amount of dynamic objects
during the scan process, the methods presented for geometry
and texture reconstruction will fail. More research is required
to distinguish dynamic and static parts in a scene and to
then consider only the latter for 3D modeling. The ultimate
goal remains a system being able to operate autonomous
in dynamic or even crowded environments for an indefinite
amount of time.
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Tübingen Perception Conference, 2006.
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